Sibprompost.ru

Стройка и ремонт
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Закон Джоуля-Ленца

Закон Джоуля-Ленца. Физика

В XIX веке независимо друг от друга, англичанин Дж.Джоуль и россиянин Э.Х.Ленц изучали нагревание проводников электрическим током и опытным путём установили закономерность: количество теплоты, выделяющееся в проводнике с током, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.
Позднее было выяснено, что это утверждение справедливо для любых проводников: твёрдых, жидких, газообразных. Поэтому открытая закономерность получила название закон Джоуля-Ленца:

Q – количество теплоты, Дж
I – сила тока в проводнике, А
R – сопротивление проводника, Ом
t – время прохождения тока, с

На рисунке показана схема установки, при помощи которой можно экспериментально проверить закон Джоуля-Ленца. Разделив силу тока на напряжение, по формуле R=U/I вычисляют сопротивление. Термометром измеряют повышение температуры воды. По формулам Q=I2Rt и Q=cmD вычисляют количества теплот, которые по результатам опыта должны совпадать.
Для тех, кто интересуется физикой более глубоко, специально заметим, что закон Джоуля-Ленца можно получить не только экспериментально, но и вывести теоретическим путём. Сделаем это.

Полученная формула A=I2Rt похожа на формулу закона Джоуля-Ленца, однако в левой её части стоит работа тока, а не количество теплоты. Что даёт нам право считать эти величины равными? Запишем первый закон термодинамики (см. § 6-з) и выразим из него работу:
DU = Q + A , следовательно, A = DU – Q .
Вспомним, что DU – это изменение внутренней энергии нагреваемого током проводника; Q – количество теплоты, отданное проводником (на это указывает знак «–» впереди); A – работа, совершённая над проводником. Выясним, что это за работа.
Сам проводник неподвижен, но внутри него движутся электроны, постоянно наталкиваясь на ионы кристаллической решётки и передавая им часть своей кинетической энергии. Чтобы поток электронов не ослабевал, над ними постоянно совершают работу силы электрического поля, создаваемого источником электроэнергии. Поэтому A – работа сил электрического поля по перемещению электронов внутри проводника.
Обсудим теперь величину DU (изменение внутренней энергии) применительно к проводнику, в котором начинает течь ток.
Проводник будет постепенно нагреваться, значит, его внутренняя энергия будет увеличиваться. По мере нагрева будет возрастать разность между температурами проводника и окружающей среды. Согласно закономерности Ньютона (см. § 6-к), будет возрастать мощность теплоотдачи проводника. Через некоторое время это приведёт к тому, что температура проводника перестанет увеличиваться. С этого момента внутренняя энергия проводника перестанет изменяться, то есть величина DU станет равной нулю.
Тогда первый закон термодинамики для этого состояния будет: A = –Q. То есть если внутренняя энергия проводника не меняется, то работа тока полностью превращается в теплоту. Используя этот вывод, запишем все три формулы для вычисления работы тока в другом виде:

Эти формулы мы пока будем считать равноправными. Позднее мы обсудим, что правая формула справедлива всегда (поэтому она и носит название закона), а две левых – только при определённых условиях, которые мы сформулируем при изучении физики в старших классах.

Работа и мощность. Закон Джоуля – Ленца

Работа тока – это работа электрического поля по переносу электрических зарядов вдоль проводника. Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась. Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

Читайте так же:
Тепловое действие электрического тока его практическое применение

(A=Ucdot I cdot t = I^2Rcdot t = fracRcdot t) .

По закону сохранения энергии, работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока.

([A]=Bcdot Acdot c= ) Вт (cdot c = ) Дж

В системе СИ 1 кВт · ч (=3 600 000) Дж.

ЗАКОН ДЖОУЛЯ – ЛЕНЦА

При прохождении тока по проводнику проводник нагревается и происходит теплообмен с окружающей средой, т. е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику:

(A=Q=Ucdot Icdot t = I^2R cdot t= frac Rcdot t) .

По закону сохранения энергии, количество теплоты, выделяемое проводником, численно равно работе, которую совершает протекающий по проводнику ток за это же время. Действительно, если рассмотрим однородный проводник, к концам которого приложено напряжение U, за время dt через сечение проводника переносится заряд dq = dt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле, работа тока будет:

Если сопротивление проводника R, то, используя закон Ома (1), получим:

Из (1) и (2) следует, что мощность тока:

(P=frac

= UI = I^2R =frac< U^2>R (3)) .

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

Таким образом, используя выражения (4), (1) и (2), получим:

Выражение (5) и представляет собой закон ДжоуляЛенца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э.X. Ленцем.

МОЩНОСТЬ ПОСТОЯННОГО ТОКА – это отношение работы тока за время (t) к этому интервалу времени.

В системе СИ: ([P] = B cdot A =) Вт.

Если силу тока в проводнике уменьшить в (2) раза, то количество теплоты, выделяемое проводником с током

При перемещении заряда (20cdot10^<-9>) Кл из точки с потенциалом (700) В в точку с потенциалом (200) В поле совершит работу

Для того чтобы расплавить за (1) мин (6) кг свинца, взятого при температуре плавления, мощность нагревателя должна быть ( (lambda=22,6) кДж/кг)

Напряжение на электрической лампе – (20) В, а сила тока в ней – (5) А. Работа тока за (2) с равна

При перемещении положительного заряда 20 нКл из точки с потенциалом (φ_1=) (+100 В) в точку с потенциалом (φ_2 = ) (–400 В) электрическое поле совершит работу

Выражение для вычисления работы электрического тока

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, определяется по

Две электрические лампы имеют одинаковые мощности и рассчитаны на напряжения (U_1=5) В и (U_2=20) В. Определите отношение сопротивлений (frac) .

Читайте так же:
Тепловое действие тока внешние признаки

Что можно измерить электросчетчиком в квартире?

Вычислите работу тока в паяльнике за (15) минут, если он рассчитан на напряжение (130) В и силу тока (0,7) А.

Какова сила тока в лампе карманного фонарика, если ее мощность – (1) Вт, а напряжение на ней – (2,!5) В?

Сколько времени понадобится, чтобы вскипятить (0,5) литра воды, находящейся при температуре (20^ C) , если для ее кипячения используют кипятильник из нихромовой проволоки длиной (1) м и площадью поперечного сечения (0,02) мм (_2) ?

Напряжение равно (110) В (Удельное сопротивление нихрома – (1,1) (cfrac< Омcdot мм^2><м>) ). Потерями теплоты в окружающую среду пренебречь.

Формула количества теплоты

Определение и формула количества теплоты

Внутреннюю энергию термодинамической системы можно изменить двумя способами:

  1. совершая над системой работу,
  2. при помощи теплового взаимодействия.

Передача тепла телу не связана с совершением над телом макроскопической работы. В данном случае изменение внутренней энергии вызвано тем, что отдельные молекулы тела с большей температурой совершают работу над некоторыми молекулами тела, которое имеет меньшую температуру. В этом случае тепловое взаимодействие реализуется за счет теплопроводности. Передача энергии также возможна при помощи излучения. Система микроскопических процессов (относящихся не ко всему телу, а к отдельным молекулам) называется теплопередачей. Количество энергии, которое передается от одного тела к другому в результате теплопередачи, определяется количеством теплоты, которое предано от одного тела другому.

Теплотой называют энергию, которая получается (или отдается) телом в процессе теплообмена с окружающими телами (средой). Обозначается теплота, обычно буквой Q.

Это одна из основных величин в термодинамике. Теплота включена в математические выражения первого и второго начал термодинамики. Говорят, что теплота – это энергия в форме молекулярного движения.

Теплота может сообщаться системе (телу), а может забираться от нее. Считают, что если тепло сообщается системе, то оно положительно.

Формула расчета теплоты при изменении температуры

Элементарное количество теплоты обозначим как $delta Q$. Обратим внимание, что элемент тепла, которое получает (отдает) система при малом изменении ее состояния не является полным дифференциалом. Причина этого состоит в том, что теплота является функцией процесса изменения состояния системы.

Элементарное количество тепла, которое сообщается системе, и температура при этом меняется от Tдо T+dT, равно:

где C – теплоемкость тела. Если рассматриваемое тело однородно, то формулу (1) для количества теплоты можно представить как:

$$delta Q=c m d T=nu c_ d T(2)$$

где $c=frac$ – удельная теплоемкость тела, m – масса тела, $c_=c cdot mu$ — молярная теплоемкость, $mu$ – молярная масса вещества, $nu=frac$ – число молей вещества.

Если тело однородно, а теплоемкость считают независимой от температуры, то количество теплоты ($Delta Q$), которое получает тело при увеличении его температуры на величину $Delta t = t_2 — t_1$ можно вычислить как:

Читайте так же:
Количество теплоты источника тока формула

$$Delta Q=c m Delta t(3)$$

где t2, t1 температуры тела до нагрева и после. Обратите внимание, что температуры при нахождении разности ($Delta t$) в расчетах можно подставлять как в градусах Цельсия, так и в кельвинах.

Формула количества теплоты при фазовых переходах

Переход от одной фазы вещества в другую сопровождается поглощением или выделением некоторого количества теплоты, которая носит название теплоты фазового перехода.

Так, для перевода элемента вещества из состояния твердого тела в жидкость ему следует сообщить количество теплоты ($delta Q$) равное:

$$delta Q=lambda d m$$

где $lambda$ – удельная теплота плавления, dm – элемент массы тела. При этом следует учесть, что тело должно иметь температуру, равную температуре плавления рассматриваемого вещества. При кристаллизации происходит выделение тепла равного (4).

Количество теплоты (теплота испарения), которое необходимо для перевода жидкости в пар можно найти как:

где r – удельная теплота испарения. При конденсации пара теплота выделяется. Теплота испарения равна теплоте конденсации одинаковых масс вещества.

Единицы измерения количества теплоты

Основной единицей измерения количества теплоты в системе СИ является: [Q]=Дж

Внесистемная единица теплоты, которая часто встречается в технических расчетах. [Q]=кал (калория). 1 кал=4,1868 Дж.

Примеры решения задач

Задание. Какие объемы воды следует смешать, чтобы получить 200 л воды при температуре t=40С, если температура одной массы воды t1=10С, второй массы воды t2=60С?

Решение. Запишем уравнение теплового баланса в виде:

где Q=cmt – количество теплоты приготовленной после смешивания воды; Q1=cm1t1 — количество теплоты части воды температурой t1 и массой m1; Q2=cm2t2— количество теплоты части воды температурой t2 и массой m2.

Из уравнения (1.1) следует:

cm>_ <2>t_ <2>rightarrow mathrm=mathrm_ <1>t_<1>+mathrm<

m>_ <2>t_ <2>rightarrow \ rightarrow rho mathrm=rho V_ <1>t_<1>+rho mathrm_ <2>t_ <2>rightarrow mathrm=V_ <1>t_<1>+V_ <2>t_<2>(1.2) end $$

При объединении холодной (V1) и горячей (V2) частей воды в единый объем (V) можно принять то, что:

Так, мы получаем систему уравнений:

Решив ее получим:

Проведем вычисления (это можно сделать, не переходя в систему СИ):

Ответ. V1=80 л, V2=120 л.

Формула количества теплоты не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Теплоемкость тела изменяется по линейному закону (рис.1) в зависимости от абсолютной температуры в рассматриваемом интервале $T_ <1>leq T leq T_<2>$ . Какое количество теплоты получает тело, если T1=300 К, T2=400 К.

Решение. Исследуя график функции теплоемкости (C(T)) (рис.1) запишем его аналитическое выражение, оно получится:

$C(T)=10+2 cdot 10^ <-2>T$ (Дж/К)

Основой для решения задачи послужит формула для количества теплоты в виде:

Подставим полученное выражение для теплоемкости (2.1) в формулу (2.2) поведем интегрирование в заданном интервале температур:

$$ begin Delta Q=int_<300>^<400>left(10+2 cdot 10^ <-2>Tright) d T=left.left(10 cdot T+10^ <-2>T^<2>right)right|_ <300>^<400>= \ =left(10 cdot 400+10^ <-2>cdot(400)^<2>right)-left(10 cdot 300+10^ <-2>cdot(300)^<2>right)=1700left(mathrm<

Закон Джоуля-Ленца: его формулировка и применение

  • Формулировка
  • Частые вопросы
  • Перейдем к практике
  • Закон Джоуля-Ленца при передаче электричества на расстояние
  • Плавкие вставки и предохранители
Читайте так же:
Блуждающие токи в тепловых сетях

Формулировка

В реальном проводнике при протекании через него тока выполняется работа против сил трения. Электроны движутся через провод и сталкиваются с другими электронами, атомами и прочими частицами. В результате этого выделяется тепло. Закон Джоуля-Ленца описывает количество тепла, выделяемое при протекании тока через проводник. Оно прямо пропорционально зависит от силы тока, сопротивления и времени протекания.

В интегральной форме Закон Джоуля-Ленца выглядит так:

Сила тока обозначается буквой I и выражается в Амперах, Сопротивление — R в Омах, а время t — в секундах. Единица измерения теплоты Q — Джоуль, чтобы перевести в калории нужно умножить результат на 0,24. При этом 1 калория равна количеству теплоты, которое нужно подвести к чистой воде, чтобы увеличить её температуру на 1 градус.

Такая запись формулы справедлива для участка цепи при последовательном соединении проводников, когда в них протекает одна величина тока, но падает на концах различное напряжение. Произведение силы тока в квадрате на сопротивление равняется мощности. В то же время мощность прямо пропорциональна квадрату напряжения и обратно пропорциональна сопротивлению. Тогда для электрической цепи при параллельном соединении можно Закон Джоуля-Ленца можно записать в виде:

В дифференциальной форме он выглядит следующим образом:

Где j — плотность тока А/см 2 , E — напряженность электрического поля, сигма — удельное сопротивление проводника.

Стоит отметить что для однородного участка цепи сопротивление элементов будет одинаковым. Если в цепи присутствуют проводники с разным сопротивлением возникает ситуация, когда максимальное количество тепла выделяется на том, который имеет самое большое сопротивление, о чем можно сделать вывод, проанализировав формулу Закона Джоуля-Ленца.

Частые вопросы

Как найти время? Здесь имеется в виду период протекания тока через проводник, то есть когда цепь замкнута.

Как найти сопротивление проводника? Для определения сопротивления используют формулу, которую часто называют “рельс”, то есть:

Здесь буквой «Ро» обозначается удельное сопротивление, оно измеряется в Ом*м/см2, l и S это длина и площадь поперечного сечения. При вычислениях метры и сантиметры квадратные сокращаются и остаются Омы.

Удельное сопротивление — это табличная величина и для каждого металла она своя. У меди на порядки меньше, чем у высокоомных сплавов типа вольфрама или нихрома. Для чего это применяется мы рассмотрим ниже.

Перейдем к практике

Закон Джоуля-Ленца имеет большое значение для электротехнических расчетов. В первую очередь вы можете его применить при расчете нагревательных приборов. В качестве нагревательного элемента чаще всего применяется проводник, но не простой (типа меди), а с высоким сопротивлением. Чаще всего это нихром или кантал, фехраль.

Они имеют большое удельное сопротивление. Вы можете использовать и медь, но тогда вы потратите очень много кабеля (сарказм, медь не используют в этих целях). Чтобы рассчитать мощность тепла для нагревательного прибора вам нужно определится, какое тело и в каких объемах вам нужно нагреть, учесть количество требуемой теплоты и за какое время её нужно передать телу. После расчетов и преобразований вы получите сопротивление и силу тока в этой цепи. На основании полученных данных по удельному сопротивлению подбираете материал проводника, его сечение и длину.

Читайте так же:
Тепловое реле таблица токов

Закон Джоуля-Ленца при передаче электричества на расстояние

При передаче электроэнергии на расстояния возникает существенная проблема — потери на линиях передачи (ЛЭП). Закон Джоуля-Ленца описывает количество тепла, выделенного проводником при протекании тока. ЛЭП питают целые предприятия и города, а для этого нужна большая мощность, как следствие большой ток. Так как количество теплоты зависит от сопротивления проводника и тока, чтобы кабеля не грелись нужно уменьшить количество тепла. Увеличить сечение проводов не всегда можно, т.к. это затратно в плане стоимости самой меди и веса кабеля, что влечет за собой удорожание несущей конструкции. Высоковольтные линии электропередач изображены ниже. Это массивные металлоконструкции, созданные чтобы поднять кабеля на безопасную высоту над землей, с целью избежания поражения электрическим током.

Поэтому нужно снизить ток, чтобы это сделать повышают напряжение. Между городами линии электропередач обычно имеют напряжение 220 или 110 кВ, а у потребителя понижается до нужной величины с помощью трансформаторных подстанций (КТП) или целым рядом КТП постепенно понижая до более безопасных для передачи величин, например 6 кВ.

Таким образом при той же потребляемой мощности при напряжении в 380/220 В ток снизится в сотни и тысячи раз ниже. А по закону Джоуля-Ленца количество тепла в этом случае определяется мощностью, которая теряется на кабеле.

Плавкие вставки и предохранители

Закон Джоуля-Ленца применяется при расчете плавких предохранителей. Это такие элементы, которые защищают электрическое или электронное устройство от чрезмерных для него токов, которые могут возникнуть в следствии скачка питающего напряжения, короткого замыкания на плате или обмотках (в случае двигателей) для защиты от дальнейших разрушений электрической системы в целом и пожара. Они состоят из корпуса, изолятора и тонкой проволоки. Проволока подбирается таким сечением, чтобы номинальный ток через нее протекал, а при его превышении количество выделяемого тепла при этом пережигало её.

В результате выше описанного сделаем вывод, что Закон Джоуля-Ленца нашел широчайшее применение и очень важен для электротехники. Благодаря информации о количеству теплоты, которую даёт выполнение расчетов по формулам указанным выше, мы можем узнать о режимах работы устройств, подобрать необходимые материалы и сечение для повышения безопасности, надежности и долговечности прибора или цепи в целом.

На этом мы и заканчиваем нашу статью. Надеемся, предоставленная информация была для вас полезной и интересной. Напоследок рекомендуем просмотреть видео, на котором более подробно рассматривается данный вопрос:

Наверняка вы не знаете:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector