Sibprompost.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Особенности работы автоматических выключателей с микропроцессорными расцепителями

Особенности работы автоматических выключателей с микропроцессорными расцепителями

Ни для кого не секрет, что автоматические выключатели это не просто рубильники, которые пропускают рабочий ток и обеспечивают два состояния электрической цепи: замкнутое и разомкнутое. Автоматический выключатель — это электрический аппарат, который в режиме реального времени «отслеживает» уровень протекающего тока в защищаемой цепи и отключает ее при превышении током определенного значения.

Самым распространенным сочетанием в автоматических выключателях является комбинация теплового и электромагнитного расцепителя. Именно эти два вида расцепителей обеспечивают основную защиту цепей от сверхтоков.

Тепловой расцепитель предназначен для отключения токов перегрузки электрической цепи. Тепловой расцепитель конструктивно состоит из двух слоев металлов, обладающих различными коэффициентами линейного расширения. Это и позволяет пластине изгибаться при нагреве и воздействовать на механизм свободного расцепления, в конечном итоге, отключая аппарат. Такой расцепитель еще называют термобиметаллическим расцепителем по названию основного элемента — биметаллической пластины.

Однако этот вид расцепителя обладает существенным недостатком — его свойства зависят от температуры окружающей среды. То есть, при слишком низкой температуре даже если цепь будет перегружена — тепловой расцепитель автоматического выключателя может не отключить линию. Возможна и обратная ситуация: в очень жаркую погоду автоматический выключатель может ложно отключать защищаемую линию, за счет нагрева биметаллической пластины окружающей средой. К тому же тепловой расцепитель потребляет электрическую энергию.

Электромагнитный расцепитель состоит из катушки и подвижного стального сердечника, удерживаемого пружиной. При превышении заданного значения тока, по закону электромагнитной индукции в катушке наводится электромагнитное поле, под действием которого сердечник втягивается внутрь катушки, преодолевая сопротивление пружины, и вызывает срабатывание механизма расцепления. В нормальном режиме работы в катушке также наводится электромагнитное поле, однако его силы не хватает, чтобы преодолеть сопротивление пружины и втянуть сердечник.

Устройство механизма электромагнитного расцепителя показано на примере АП50Б

Этот вид расцепителя не обладает таким большим потреблением электрической энергии, как тепловой расцепитель.

В настоящее время широкое распространение получили электронные расцепители на базе микроконтроллеров. С их помощью можно осуществлять точную настройку следующих параметров защиты:

  • уровень рабочего тока защиты
  • время защиты от перегрузки
  • время срабатывания в зоне перегрузки с функцией «тепловой памяти» и без нее
  • ток селективной отсечки
  • время селективной токовой отсечки

Реализованная функция проведения самотестирования работоспособности механизма свободного расцепления с помощью кнопки ТЕСТ позволяет проводить проверку аппарата потребителем.

Регулировка параметров настройки электрической цепи на лицевой панели устройства позволяет персоналу без лишнего труда понять, как настроена защита отходящей линии.

С помощью поворотных переключателей на лицевой панели устанавливается уровень рабочего тока цепи. Регулировка уставки рабочего тока расцепителя IR устанавливается в кратности: 0,4; 0,45; 0,5; 0,56; 0,63; 0,7; 0,8; 0,9; 0,95; 1,0 к номинальному току выключателя.

Существует два режима работы полупроводникового расцепителя при перегрузке электрической цепи:

  • с «тепловой памятью»;
  • без «тепловой памяти»

«Тепловая память» является эмуляцией работы теплового расцепителя (биметаллической пластины): микропроцессорный расцепитель программным способом задает время, которое потребовалось бы для остывания биметаллической пластины. Данная функция позволяет оборудованию и защищаемой цепи больше времени остывать и, соответственно, их срок службы не снижается.

Одним из преимуществ является установка уровня тока и времени срабатывания автоматического выключателя при коротком замыкании, что осуществляет необходимую селективность защиты. Это необходимо для того, чтобы вводной автоматический выключатель отключился позже, чем ближайшие к аварии аппараты. Важно отметить, что, в отличие от теплового расцепителя, уставки по времени в микропроцессорном расцепителе не меняются при изменении температуры окружающей среды.

Регулировка уставки тока селективной токовой отсечки выбирается кратно рабочему току IR: 1,5; 2; 3; 4; 5; 6; 7; 8; 9; 10.

Регулировка уставки времени селективной токовой отсечки выбирается в секундах: 0 (без выдержки времени); 0,1; 0,15; 0,2; 0,25; 0,3; 0,35; 0,4.

Электромагнитная совместимость микропроцессорных расцепителей автоматических выключателей OptiMat D позволяет применять эти аппараты в общепромышленных электроустановках. В свою очередь, электромагнитные поля, создаваемые элементами микропроцессорного расцепителя не оказывают негативного влияния на окружающую технику.

Рассмотрим выбор уставок на примере микропроцессорного расцепителя MR1-D250 автоматического выключателя OptiMat D. Имеется асинхронный двигатель АИР250S2 с параметрами Р=75 кВт; cosφ=0,9; Iп/Iном=7,5; для которого нужно выбрать уставки защищающего аппарата (автоматический выключатель защищает непосредственно линию с данным электродвигателем). Примем следующие условия: пуск электродвигателя легкий и время пуска равное 2 с.

Выбираем для нашего двигателя уставку в 4 секунды с функцией тепловой памяти:

В нашем случае номинальный ток электродвигателя составляет 126,6 А. Соответственно, выставляем переключатель регулировки номинального тока выключателя на значение 0,56, чтобы ближайшее значение получилось 140 А.

Чтобы автоматический выключатель не срабатывал ложно от пусковых токов, кратность которых для выбранного двигателя составляет 7,5 примем уставку селективной токовой отсечки равную 8.

Т. к. данный выключатель будет устанавливаться непосредственно для защиты электродвигателя для обеспечения селективности в действии выключателей принимаем мгновенную селективную токовую отсечку (без выдержки по времени).

Следует также отметить, что при превышении током короткого замыкания значения в 3000 А выключатель будет срабатывать мгновенно, то есть без выдержки по времени.

Таким образом, мы рассмотрели пример выбора уставок микропроцессорного расцепителя, обеспечивающие защиту асинхронного двигателя. Данный пример выбора уставок микропроцессорного расцепителя не является техническим руководством. В конечном виде панель настройки микропроцессорного расцепителя автоматического выключателя будет выглядеть так:

Читайте так же:
Тепловой защиты термостат температурный выключатель

Электромагнитная совместимость, соответствующая требованиям ГОСТ Р 50030.2-2010, и возможность внедрения в систему автоматизации делает автоматические выключатели Optimat D250 более надежными, удобными и выгодными решениями по многим показателям.

Расцепители для модульных автоматических выключателей

Расцепитель – это функциональный элемент автоматического выключателя, отключающее устройство, приводящее в движение его контакты.

Обычно, используется два типа расцепителя: электромагнитный расцепитель короткого замыкания (моментального действия) и расцепитель перегрузки (тепловой расцепитель), скорость срабатывания которого зависит от величины превышения номинального тока.

Расцепитель – это функциональный элемент автоматического выключателя, отключающее устройство, приводящее в движение его контакты.
О конструкции модульного автоматического выключателя читайте в статье.

Обычно, используется два типа расцепителя: электромагнитный расцепитель короткого замыкания (моментального действия) и расцепитель перегрузки (тепловой расцепитель), скорость срабатывания которого зависит от величины превышения номинального тока.

Тепловой расцепитель всегда срабатывает с определенной выдержкой времени, которая обратно пропорциональна величине превышения номинального тока (см. рис. 2). Выдержка времени позволяет избежать нежелательных ложных срабатываний при подключении или отключении нагрузки (т.е. при переходных процессах), или при кратковременном подключении мощной нагрузки. Так, при подключении к сети импульсных блоков питания или включении электродвигателей происходит резкое увеличение тока, который превышает номинальный, что нормально и не имеет отрицательного влияния на электрическую линию, поэтому автомат не должен отключаться при кратковременных скачках тока.

С электромагнитным расцепителем все просто, он должен за доли секунды разомкнуть контакты при коротком замыкании.

Комбинация электромагнитного и теплового расцепителей задают время срабатывания автоматического выключателя в зависимости от величины превышения тока относительно номинала. Эта время-токовая зависимость определяет один из важнейших параметров автоматического выключателя – характеристику отключения (кривую срабатывания). Наиболее распространены характеристики отключения B, C и D. Наибольшая выдержка времени у характеристики D, автоматы с такой характеристикой применяются для защиты линий, к которым подключены электротвигатели и другая сильно-индуктивная нагрузка.

Рисунок 2. Графики кривых срабатывания модульных автоматических выключателей

Рассмотрим график кривой типа B. Автомат с характеристикой отключения B при превышении тока на 13% от номинала сработает больше, чем через 20 минут, а при превышении на 50% сработает примерно через 20 секунд. Работа электромагнитного расцепителя показана на графике зеленым цветом – за 0,1 сек. Он отключит автомат при токе большем от номинального в 3 – 5 раз.

Пример: автомат с номиналом 16 А и характеристикой отключения B может спокойно проработать 20 минут, не отключая нагрузку, если ток в линии будет 18 А; при 24 А срабатывание произойдет через 20 секунд, а при 40 А – через 1 секунду. Электромагнитный расцепитель разомкнет контакты при токе от 48 А до 80 А.

Рассмотрим график кривой типа C. Автомат с характеристикой отключения C гарантировано начинает срабатывать только при превышении тока на 45% от номинала, так при превышении на 50% он сработает примерно через 20 минут или даже больше, а при превышении в 2,5 раза сработает примерно через 75 секунд. Работа электромагнитного расцепителя показана на графике голубым цветом – за 0,1 сек. он отключит автомат при токе большем от номинального в 5 – 10 раз.

Пример: автомат с номиналом 16 А и характеристикой отключения C при токе 23 А может не отключиться и через 20 минут; при 40 А срабатывание произойдет примерно через 75 секунд. Электромагнитный расцепитель разомкнет контакты при токе от 80 А до 160 А.

Категории автоматических выключателей: A, B, C и D

Автоматическими выключателями называются приборы, отвечающие за защиту электроцепи от повреждений, связанных с воздействием на нее тока большой величины. Слишком сильный поток электронов способен вывести из строя бытовую технику, а также вызвать перегрев кабеля с последующим оплавлением и возгоранием изоляции. Если вовремя не обесточить линию, это может привести к пожару, Поэтому, в соответствии с требованиями ПУЭ (Правила устройства электроустановок), эксплуатация сети, в которой не установлены электрические автоматы защиты, запрещена. АВ обладают несколькими параметрами, один из которых – время токовая характеристика автоматического защитного выключателя. В этой статье мы расскажем, чем различаются автоматические выключатели категории A, B, C, D и для защиты каких сетей они используются.

Особенности работы автоматов защиты сети

К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.

Токи, которые могут представлять опасность для сети, подразделяются на два вида:

  • Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
  • Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.

Устройство и принцип работы автоматического выключателя – на видео:

Токи перегрузки

Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии. В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму. Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.

Время срабатывания защитного автоматического выключателя зависит от величины перегрузки: при небольшом превышении нормы оно может занять час и более, а при значительном – несколько секунд.

За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.

Читайте так же:
Тяговые электродвигатели переменного тока для тепловозов

Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.

Токи короткого замыкания

Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание. За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником. Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.

Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?

На видео про селективность автоматических выключателей:

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Защиту от перегрузок в таких линиях обеспечивает реле максимального тока, автоматический выключатель только предохраняет сеть от повреждений в результате воздействия сверхтоков короткого замыкания.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

Это позволит соблюсти селективность защитных автоматов (избирательность), и при КЗ в одной из веток не будет происходить обесточивания всего дома.

Автоматические выключатели категории Д

Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

Защитные устройства категории K и Z

Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

Читайте так же:
Abb автоматический выключатель с регулировкой тепловой защиты

Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

Наглядно про категории автоматов на видео:

Заключение

В этой статье мы рассмотрели время токовые характеристики защитных автоматов, классификацию этих устройств в соответствии с ПУЭ, а также разобрались, в каких цепях устанавливаются приборы различных категорий. Полученная информация поможет вам определить, какое защитное оборудование следует использовать в сети, исходя из того, какие устройства к ней подключены.

Время токовая характеристика автоматического выключателя

Автоматические выключатели служат для аварийного размыкания цепи в случае превышения показателей силы тока. Они позволяют уберечь приборы от поломки или выхода из строя при недопустимых нагрузках и предотвратить возгорание.

Принцип действия

Принцип действия автоматического выключателя достаточно прост. В конструкцию выключатели входят два вида расцепителей: электромагнитный и тепловой. Первый – мгновенно срабатывает при сильном скачке силы тока. Электромагнитный расцепитель состоит из соленоида со стальным подвижным сердечником, который удерживается пружиной. Если заданный показатель тока превышается, электромагнитное поле в катушке наводится, что приводит к втягиванию катушки. В результате срабатывает механизм сопротивления. Если режим работы стандартный, магнитное поле также наводится, но оно недостаточной силы, чтобы сопротивление пружины было преодолено.

Второй – тепловой расцепитель имеет в своем составе биметаллическую пластину, которая рассчитана на определенную силу тока. Если протекающий ток превышает допустимые показатели, пластина из биметалла нагревается и гнется, благодаря чему также происходит расцепление электросети.

Работа автоматического выключателя основывается на этих двух расцепителях, поскольку порознь они малоэффективны.

Электромагнитный расцепитель быстро срабатывает при небольшом скачке. Но если взять во внимание, что некоторые высокопроизводительные моторы нуждаются в более сильном токе во время пуска, чем в обычном рабочем состоянии, то нет необходимости в срабатывании выключателя. В бытовых условиях такими мощными приборами являются пылесос, электрочайник, микроволновая печь. Для теплового расцепителя нужно некоторое время для нагревания и плавки пластины, которое может быть критичным для бытовых или промышленных приборов, подвергшихся высокому скачку тока. В жилом доме очень пагубным окажется влияние сильного тока на холодильник, компьютер и оргтехнику.

Строение электромагнитного расцепителя

Именно поэтому два вида расцепителя применяются в автоматических выключателях сообща, а за отрезок времени от скачка силы тока до аварийного выключения отвечает времятоковая характеристика автоматического прибора.

Типы характеристик

Времятоковая характеристика определяет взаимосвязь между нарастанием силы тока и моментом аварийного отключения посредством защитного автомата. Поскольку различные условия потребления тока в бытовых и промышленных условиях требуют различного напряжения сети, автоматы для защиты также обладают различной мощностью и характеристиками срабатывания. Автоматические выключатели выпускают с номиналами силы тока от 6 до 125 ампер. В быту же наиболее часто применяются защитные автоматы на 16 или 20 ампер. Для большого частного дома подойдет устройство в 25А. Что касается времятоковой характеристики, ее обозначают латинскими буквами на маркировке выключателя. Наиболее распространены три типа: B, C, D. Данная маркировка обозначает чувствительность электромагнитного расцепителя или же скорость мгновенного срабатывания при граничном повышении силы тока.

Диапазон срабатывания для этих трех типов следующий:

Расшифровка параметров разных типов автоматов выглядит так: если автомат рассчитан на силу тока в 20 ампер, то этот показатель умножается на данные диапазона срабатывания, и получается характеристика чувствительности автоматического выключателя.

Таким образом, автомат типа В на 20 ампер выключится мгновенно при силе тока свыше 100 ампер. Граничным показателем для его срабатывания является 60А, а при силе тока от 60 до 100А скорость выключения будет зависеть от скорости нагревания биметаллической пластины теплового датчика.

При выборе электрического защитного автомата для дома или промышленных целей следует не только рассчитывать его мощность, исходя из потребляемого тока в помещении, но и обращать внимание на тип времятоковой характеристики.

Автоматы идентичной мощности, но разного типа времятоковой характеристики ведут себя по-разному. В ситуации, когда автомат типа В сработает с доли секунды, такой же предохранитель типа С отреагирует только через 5-7 секунд, что может негативно сказаться на приборах и электросети в целом. В жилой квартире, где много высокочувствительных приборов с малым потреблением тока, необходимо устанавливать выключатели типа В. Для больших коммерческих, полупромышленных или офисных помещений, где есть мощные приборы, можно применить автомат типа С. Тип D используется исключительно на промышленных объектах, где есть моторы с мощными пусковыми характеристиками.

Кривая времятоковой характеристики

Для описания времятоковой характеристики предохранительных автоматических выключателей часто используют график функций, где вертикально на оси ординат прописано время расцепления электросети в секундах и десятых секунд, а горизонтально на оси абсцисс обозначены показатели роста силы тока. На данном графике рост определяется делением тока в сети на номинальный ток автомата I/In.

График функции кривой времятоковой характеристики

Изображенные две кривые отвечают за показатели в холодном состоянии (сверху) и разогретом состоянии (снизу).

Дополнительная информация: Условно также нижнюю часть кривой, резко устремляющуюся вправо, считают зоной срабатывания электромагнитного расцепителя, а левую ее часть, плавно спускающуюся вниз, – зоной теплового расцепителя.

Слева от кривой размещается отрезок времени до срабатывания автоматического выключателя, а справа – после расцепления. Сама кривая представляет момент выключения. Традиционно времятоковые характеристики в виде графика функций изображаются для работы автоматов при температуре окружающей среды +30 градусов.

Читайте так же:
Тепловое действие тока сообщение по физике

Если просмотреть характеристику для автомата типа В, диапазоном срабатывания которого является показатели от 3 до 5 In, то можно увидеть следующее: время отключения сети при проходящем токе в 3 In составляет 0,02 секунды в разогретом состоянии и до 35 секунд в холодном состоянии. Для автоматов мощностью свыше 32А показатель в холодном состоянии может достигать 80 секунд.

Если же проходящий ток для того же типа автомата будет равен 5In, то в горячем состоянии автомат сработает за 0,01 секунду и за 0,04 секунды в холодном.

График функции автомата типа С

Автомат типа С не сработает при токе в 3In, а при токе 5In он отключится за 0,02 секунды в разогретом и за 11 секунд в охлажденном состоянии. По этой причине не стоит устанавливать предохранители типа С в жилом доме, где бытовые приборы не рассчитаны на большое потребление тока и резкие перепады. Автомат типа В с высокой чувствительностью обеспечит надежную защиту проводки и электрооборудования. Если же в большом частном доме используется распределительный автомат, на входе можно разместить выключатель типа С правильно рассчитанной мощности, а для отдельных точек использовать автоматы типа В.

Устройство. Видео

Об особенностях устройства автоматического выключателя АВВ расскажет видео ниже.

Проверка автоматических выключателей

Автоматические выключатели служат для защиты электрических цепей напряжением до 1000 В от аварийных режимов работы. Надежная защита электрических цепей данными электрическими аппаратами обеспечивается только в том случае, если автоматический выключатель находится в исправном техническом состоянии, а его фактические рабочие характеристики соответствуют заявленным. Поэтому проверка автоматических выключателей является одним из обязательных этапов работ при вводе в работу электрических щитов различного назначения, а также при периодической их ревизии.

Проверка автоматических выключателей :

Содержание:
  1. Проверка работы расцепителей автоматических выключателей
  2. Как проверяется срабатывание автоматических выключателей?
  3. Сколько автоматических выключателей требуется проверить?
  4. Необходимость эксплуатационной проверки и прогрузки автоматов
  5. Результаты проверки автоматических выключателей

Для подтверждения безопасности электрооборудования его требуется проверять на исправность и соответствие установленным требованиям. Ситуации, в которых требуется проверка автоматических выключателей:

  • прием в эксплуатацию после установки электроустановки;
  • спустя установленный системой ППР срок эксплуатации;
  • после проведения капитального ремонта электрических устройств;
  • после текущего ремонта;
  • в профилактических целях в межремонтный период.

В ходе испытаний проводится проверка соответствия характеристикам, которые задаются оборудованию производителем. Цель проверки — установить, обеспечивает ли оборудование такие параметры:

  • предотвращение поражения электрическим током при коротком замыкании (это условие обязательно в том случае, если других защитных мер для полной безопасности недостаточно);
  • защиту электросети от возгораний и перегрузок при технологических неисправностях или повреждении изоляции.

Чтобы автоматический выключатель защищал от поражения электрическим током, он должен обеспечивать отключение от питания участка электрической цепи, который зависит от тока одофазного замыкания.

Перед проверкой автоматических выключателей часто задаются следующие вопросы:
  1. Сколько автоматических выключателей необходимо испытывать?
  2. Требуется ли проведение проверки в ходе эксплуатационных испытаний?
  3. Требуется ли периодически повторное проведение проверок?
  4. Испытания проводятся в лаборатории или у заказчика?
  5. Что делать, если оборудование проверку не прошло?
  6. Требуются ли резервные автоматические выключатели?
Проверка работы расцепителей автоматических выключателей

После срабатывания одного из расцепителей автоматически выключатель выполняет свою функцию — отключает питание определенного участка цепи. Расцепители по типу могут быть тепловыми или электромагнитными, но в современном оборудовании чаще всего используют оба типа для наиболее надежной защиты. Автоматы с одним типом расцепителей имеют гораздо более узкую сферу применения.

Автоматы с тепловыми расцепителями обеспечивают защиту электросети от перегрузки линии. Такой расцепитель представляет собой двухслойную биметаллическую пластинку. Когда возникает перегрузка, этот элемент выключателя нагревается. Под воздействием температуры происходит деформация пластины, что и приводит к расцеплению.

Электромагнитные расцепители нужны для защиты линии от разрушительного воздействия тока КЗ. Этот элемент прибора представляет собой соленоид с подвижным сердечником. Механизм расцепления приводится в действие сердечником, который втягивается магнитным полем, созданным под воздействием токов КЗ.

В свою очередь электромагнитные расцепители подразделяются на типы в зависимости от временных и токовых характеристик, то есть от того, за какое время и токи какой силы приводят выключатель в действие. Обозначаются типы электромагнитных расцепителей заглавными латинскими буквами. К наиболее распространенным относятся типы, соответствующие буквам B, C, D.

В этих элементах мгновенное расцепление происходит при таких стандартных диапазонах:

  • B — в диапазоне от 3-кратного до 5-кратного номинального тока;
  • С — в диапазоне 5-10-кратного номинального тока;
  • D — 10-20-кратного номинального тока.

При низких пусковых токах в системе допустимо использовать автоматы с расцепителями типа B. В этой же сети целесообразно установить входной автомат с характеристиками C. Эти же устройства допустимо устанавливать в сети с умеренными пусковыми токами. Для защиты линии с высокими пусковыми токами подходят автоматы типа D.

ГОСТ Р 50345-2010 «Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения» регламентирует, как и какие именно автоматы нужно испытывать.

Таблица 7. Время-токовые рабочие характеристики

Термин «холодное состояние» означает, что при контрольной температуре калибровки ток предварительно не пропускают.
Примечание — Для выключателей типа D рассматривается возможность дополнительного испытания для промежуточного значения между c и d. a, b и c — это испытания тепловой защиты, а d и e — соответственно, защиты от короткого замыкания (КЗ).

Читайте так же:
Как выставить ток теплового реле
Как проверяется срабатывание автоматических выключателей?

Специалисты нашей лаборатории для выполнения испытаний используют специальное оборудование: аппарат «Синус-». Этот прибор весит 22 кг и внешне напоминает системный блок ПК. Аппарат позволяет успешно провести испытания расцепителей электромагнитного типа, полупроводниковых и тепловых при условии, что In попадает в диапазон от 16 до 320 А.

Для проведения испытаний выводы аппарата подключают к вводам автоматического выключателя. После этого подается ток и засекается, какое время пройдет до срабатывания механизма расцепления. При этом испытание проводится поэтапно:

  1. Сначала на неразогретый прибор подается ток, который превышает номинальный в 1,13 раз. Расцепитель теплового типа не должен срабатывать на протяжении 1 часа номинальный ток меньше 63 А, и минимум в течение 2 часов при значении номинального тока выше 63 А.
  2. Сразу посл завершения первого этапа на оборудование подают ток, который превышает номинальное значение в 1,45 раза. Расцепитель должен сработать в течение часа при In 63 А.
  3. После завершения второго этапа с выключателя снимается напряжение, ему дают вернуться в первоначальное «холодное» состояние. Далее на прибор подается ток, больше In в 2,55 раза. Если In 32 А расцепление должно произойти за 2 минуты.

Для проведения всех этапов испытания достаточно включить аппарат «Синус» и установить требуемое значение тока в Амперах. После этого автоматически включается таймер, который отключается после расцепления.

Подобным же образом проводится и испытание автоматических выключателей с электромагнитными расцепителями:

  1. На «холодный» автомат подается ток в 3, 5 или 10 А в зависимости от его типа (B, C, D – соответственно). Мгновенный расцепитель должен вызвать отключение за 0,1 секунду или более.
  2. Автомат возвращается в холодной состояние, а затем на него подается ток 5, 10 или 20 А, также в зависимости от типа расцепителя. Сработать устройство должно менее, чем за 0,1 секунды.

При выполнении испытания ток, который подается на прибор, возрастает от минимального значения до верхней границы. Происходит это практически мгновенно. Во время срабатывания расцепителя фиксируется величина тока в этот момент и время, которое прошло с достижения током необходимого значения.

Сколько автоматических выключателей требуется проверить?

Заказчик сам может решать, где проводить испытания — в лабораторных условиях или непосредственно на объекте. В последнем случае присутствие специалистов лаборатории на объекте может быть достаточно длительным, но это вполне выполнимо, если вы обратитесь в нашу лабораторию. Наши специалисты проведут на объекте столько времени, сколько потребуется.

Если объект еще не эксплуатируется, то проверка в лаборатории будет значительно проще и удобней. Но если объект введен в эксплуатацию, то потребуется замена проверяемых автоматов резервными. В этом случае заказчику потребуется заранее подготовить их а необходимом количестве. Резервные выключатели будут установлены на место проверяемых, чтобы электроустановка продолжала работать во время выполнения испытаний.

Если же заказчик не считает целесообразным приобретать большое количество резервного оборудования, то проводить испытание придется в нерабочие часы — вечером и ночью, а также в выходные дни. В этом случае потребителю не придется испытывать неудобства от отключения сети. Заказчики могут выбрать вариант проведения испытаний, которые предложат наши специалисты. Окончательное решение всегда остается за ответственным лицом: инженером по технической безопасности или владельцем.

Необходимость эксплуатационной проверки и прогрузки автоматов

Специалисты все же рекомендую время от времени проводит проверку исправности автоматов. Это объясняется тем, что любой прибор со временем изнашивается и может выйти из строя. Чтобы убедиться в том, что автоматы выполняют свою защитную функцию, стоит установить определенную периодичность, с которой будут проводится эксплуатационные испытания.

Для установления периодичности лучше всего опираться на рекомендации производителя приборов. Как правило, приборы европейского производства можно проверять относительно редко. А вот если в системе установлены автоматы, изготовленные в Китае или на отечественном заводе, то рекомендуется проводить проверки чаще. В любом случае окончательное решение остается за заказчиком.

Результаты проверки автоматических выключателей

Выключатель должен быть исключен из сети и заменен аналогичным в следующих случаях:

  • при токе несрабатывания происходит расцепление;
  • при токе срабатывания расцепление не происходит;
  • автомат срабатывает, но этот момент не вписывает в допустимый интервал времени срабатывания.

Если в ходе испытаний был выявлен хотя бы один выключатель, который подлежит замене, то по требованиям ПУЭ необходимо дополнительно проверить такое же количество приборов, которое было отправлено на первичную проверку.

Чаще всего выявление неисправных выключателей происходит при эксплуатационных испытаниях. Если проверка осуществляется в рамках передачи объекта в эксплуатацию, то вероятность обнаружения неисправности значительно ниже. Использование надежного оборудования и строгое соблюдение регламента испытаний позволяет нам выявить дефектные выключатели с высокой точностью. Это позволяет максимально защитить электросеть, объект и людей, которые проживают на нем, работают или посещают его. И хотя замена выключателя может быть достаточно затратной, повышение безопасности этого стоит.

Случается, что из-за короткого замыкания происходит поломка другого оборудования сети: вентиляционного или промышленного. В результате затраты становятся еще больше, поэтому вклад средств в испытания и замену выявленных неисправных автоматов можно рассматривать как экономию в долгосрочной перспективе.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector