Sibprompost.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Большая Энциклопедия Нефти и Газа

Большая Энциклопедия Нефти и Газа

Тепловой расцепитель — автомат

Тепловые расцепители автоматов щитков ОПМ всех модификаций могут быть от 15 до 50 А. [1]

Тепловой расцепитель автомата обычно выполняется на базе биметаллической пластины; он является расцепителем с выдержкой времени и применяется для защиты от токовых перегрузок. Конструктивно очень часто свободный конец биметаллической пластины выполняет непосредственно функцию защелки, удерживающей механизм выключателя во включенном положении. [2]

Тепловой расцепитель автомата защищает электроустановку от длительной перегрузки по току. [3]

Поэтому тепловые расцепители автоматов или тепловые реле магнитных пускателей необходимо проверять током, равным пусковому току соответствующего электродвигателя. Магнитный пускатель или автомат может оставаться в эксплуатации, если время срабатывания теплового реле или теплового расцепителя при протекании пускового тока защищаемого электродвигателя не превышает времени t электродвигателя. [4]

Аналогично выбирается уставка теплового расцепителя автомата . При этом электромагнитный расцепитель следует заблокировать. [5]

Как и в тепловом расцепителе автомата , основным элементом электротеплового реле является биметаллическая пластинка. [6]

Как и в тепловом расцепителе автомата , основным элементом теплового реле является биметаллическая пластинка. Нагрев пластинки может быть непосредственным — пропусканием по ней тока защищаемого двигателя, косвенным — с помощью рядом расположенного нагревателя и комбинированным. Нагревшись, пластинка изгибается и ее конец освобождает рычаг, который под действием пружины размыкает контакты теплового реле, включаемые в цепь удерживающей катушки контактора. [7]

Тепловое реле так же, как тепловой расцепитель автомата , не реагирует на кратковременные пусковые токи электродвигателей. Вместе с тем следует учитывать, что тепловые реле магнитного пускателя, защищая электродвигатель от перегрузки, не защищают его от коротких замыканий. Поэтому последовательно с магнитным пускателем необходимо устанавливать плавкие предохранители. [9]

С некоторым запасом ( около 10 %) следует выбирать токи уставок тепловых расцепителей автоматов , устанавливаемых в распределительных шкафах, в связи с возможностью достижения внутри них температуры выше 25 С. Для температуры 25 С производится калибровка расцепителей автоматов на заводах-изготовителях. [10]

В малых установках защиту от токовых перегрузок обычно осуществляют автоматы АЕ2036 или АП50 — ЗМТ и тепловое реле ТРН-10, которое дублирует тепловые расцепители автоматов . [11]

В малых установках защиту от токовых перетрузок обычно осуществляют автоматы АЕ2036 или АП50 — ЗМТ и тепловое реле ТРИ 10, которое дублирует тепловые расцепители автоматов . [12]

При установке автоматов и предохранителей в закрытых шкафах ( например, в распределительных пунктах) ввиду ухудшения условий охлаждения их следует нагружать током не более 85 — 90 % номинального тока теплового расцепителя автомата или плавкой вставки предохранителя. [13]

В связи с возможностью достижения внутри шкафов температуры выше 25 С, для которой на заводах-изготовителях производится калибровка расцепителей автоматов, следует выбирать с некоторым запасом ( около 10 %) токи уставок тепловых расцепителей автоматов , устанавливаемых в распределительных пунктах и шкафах. Особое требование предъявляется к однофазным двухпроводным линиям во взрывоопасных зонах класса B-I, защита которых от коротких замыканий должна быть предусмотрена в фазном и нулевом проводах. При этом для зануления в линии должен быть предусмотрен третий провод. [14]

При дистанционном и автоматическом управлении двигателями в качестве коммутационных аппаратов широко распространены магнитные пускатели и контакторы, в которых для защиты двигателя от перегрузки ( если такая защита требуется по условиям работы двигателя) устанавливаются тепловые реле, характеристики которых сходны с характеристиками тепловых расцепителей автоматов . [15]

Как выбрать магнитный пускатель и автоматический выключатель для асинхронного двигателя

На примерах рассмотрен принцип выброра магнитного пускателя для управления электродвигателем и автоматического выключателя для его защиты от токов короткого замыкания и перегрузки.

Содержание статьи

Для пуска, реверсирования, принудительной остановки противотоком асинхронных электродвигателей электрики используются контакторы и магнитные пускатели. От правильности выбора коммутационной аппаратуры зависит, как и безотказность системы в целом, так и электробезопасность обслуживающего персонала.

Выбор пускателя и избыточным коммутируемым током ведет к большим финансовым затратам, при его коммутации слышны шлепки большей громкости, чем те что издают маленькие пускатели. Недостаточные по коммутируемой мощности пускатели долго не прослужат, будут греться, и подгорать клеммники и контакты. В результате переходное сопротивление контакта будет расти до тех пор, пока контакт не исчезнет полностью, что приведет к преждевременной замене аппарата.

Автоматические выключатели также должны быть правильно подобраны, особенно при тяжелом пуске двигателя. Слишком чувствительный автомат будет выбивать при пуске, а если он наоборот взят с излишним запасом по току, то в аварийной ситуации может и не отреагировать, что приведет к повреждению кабеля, обмотки двигателя вплоть до возгорания.

Пуск для электродвигателя сопровождается повышенным током в период разгона его до номинальных оборотов, в случае перегрузки и нехватки мощности двигателя для вращения исполнительных механизмов возможно пониженное число оборотов с повышенными токами, в плоть до того, что он вообще не начнет раскручиваться. И наоборот если мощность двигателя избыточна, то потребляемый им ток будет ниже номинального.

Читайте так же:
Электрический ток как источник теплоты

Из-за вышеперечисленных причин и появляется необходимость правильного подбора пусковой и защитной аппаратуры в виде магнитных пускателей, контакторов, тепловых реле и автоматических выключателей.

Автоматические выключатели устанавливаются до магнитного пускателя, чтобы в случае необходимости полностью обесточить систему, как силовую цепь, так и цепь управления (питания катушки).

Вместо автоматических выключателей могут использоваться плавкие вставки или предохранители, но в последнее время такие решения встречаются реже, чем раньше. Это усложняет обслуживание и вызывает необходимость иметь в запасе хотя бы комплект предохранителей.

Выбор магнитного пускателя

Магнитные пускатели выпускаются на определенный номинальный ток, из ряда: 6.3 – 10 – 25 – 40 – 63 – 100 – 160 – 250. Интересно, что линейка номиналов пускателей соотвествует золотому сечению. Еще ему соотвествуют стандартные значения сечения проводов. Подробнее об этом смотрите здесь: Какая связь между сечениями проводов и популяцией кроликов

Схемы магнитных пускателей ПМЛ:

Часто магнитные пускатели разделяют не по токам, а по величинам от 0 до 7, чем больше ток (или величина пускателя) тем больше его габариты и площадь контактов (0 — 6, 3, 1 — 10, 2 — 25, 3 — 40 и т.д.). Опытный электромонтер может отличить по размеру корпуса, конструкции дугогасителя и габаритам контактных площадок примерный коммутируемые ток и напряжение.

Однако если номинальный ток пускателя соответствует току двигателя, это еще не значит, что их можно использовать в паре. Если такое понятие как категория применения, она характеризует режим работы коммутируемой аппаратуры, частоту и условия коммутации. Иначе говоря – это способность переносить пусковые токи. Пусковые токи асинхронного двигателя могут превышать номинальные и в 10 раз, это зависит от условий пуска, напряжения в сети и прочих факторов.

Категории применения обозначаются: «АС-номеркатегории». Сводная таблица величин и категорий применения для магнитных пускателей расположена ниже.

Из неё нас интересует строка «АС-3 – управления двигателями с короткозамкнутым ротором (пуск, отключение без предварительной остановки)». Из этого очевидно, что коммутационные аппараты с такой категорией созданы для того, что бы включать и отключать электродвигателя. Они выдерживают прямой пуск.

Далее нужно определиться с номинальным током пускателя. Для этого нам нужно знать технические характеристики коммутируемого двигателя, а именно:

cos Ф – коэффициент мощности,

P – мощность двигателя номинальная;

U – рабочее напряжение (коммутируемое);

Тогда номинальный ток пускателя равен:

Для быстрых расчетов иногда применяют другую методику, когда мощность двигателя умножают на 2 и получают номинальный ток (приблизительно).

Далее нужно определить пусковой ток, в справочниках это указывается либо как «k» либо как «Iп/Iн». Это кратность или соотношение пускового тока к номинальному. Показывает, насколько ток в момент пуска превышает номинальную величину.

Пускатель с категорией применения АС-3 может коммутировать ток в 5-7 раз больше чем номинальный, для чего это сказано я покажу при расчетах ниже.

Выбираем пускатель

Допустим, у нас есть асинхронный двигатель с мощностью 2.2 кВт типа 4АМ100L6У3. На его шильдике написано, что кпд 81.0%, коэффициент мощности – 0.73, в интернете я нашел его технические данные, чтобы узнать кратность пускового тока, она оказалась – 5.5

1. Быстрый способ: IН=2.2*2 = 4.4А

2. Сложный способ: IНОМ=2200/(380*0.81*0.73*1.73)=5.6А

Результаты такого расчета дали больший ток.

Теперь считаем пусковой ток: IП=5.6*5.5=30.8А

Подбираем пускатель, с номинальным током более чем 5.6 А, с категорией применения АС-3. В результате обзора рынка, нам подходит пускатель ПМЕ 111 на 10А с тепловым реле.

Выбор автоматического выключателя

Автомат может сработать при пуске или затяжном пуске электродвигателя, когда потребляемый ток значительно превышает максимальный. В автоматическом выключателе за защиту отвечают два узла:

1. Электромагнитный расцепитель. Срабатывает при пиковом токе перегрузке. Этот ток зависит от типа автомата.

2. Тепловой расцепитель. Срабатывает при незначительном но длительном превышении номинального тока.

Номинальный ток двигателя у нас 5.6 А, значит нам нужен автомат не меньше этого значения. Типы автоматов куказывают на доустипое превышение по току в пике:

тип D – 10-50 раз.

Виды защитных характеристик автоматических выключателей

Пример выбора автоматического выключателя

Так как у нас пусковой ток в 5.5 раз больше чем номинальный, это значит что нам подходит автомат типа С и D. Например, автоматический разъединитель EZ9F34306 Schneider Easy9, рассчитан на 6 А и его тип C, позволит выдержать пусковые токи до 60 А.

Читайте так же:
Тепловое движение электрического тока закон джоуля ленца

Но такой автомат будет работать на пределе да и реальная уставка по току может быть ниже 5.5, т.к. тип С находится в пределах 5-10, нужен запас по току хотя бы в 20%.

Поэтому лучше установить автоматический выключатель на тот же ток или немного больший, но типа D, например ИЭК 6-8А ВА47-29

Или на ток 10А с типом C, например PL4-C10/3 Moeller / Eaton

Требования к автомату заключаются в том, чтобы он стабильно выдерживал номинальный ток, и его не выбило при пуске. Если планируется режим работы двигателя с частыми включения и выключениями лучше использовать автомат типа D, он менее чувствителен к всплескам тока.

Приниципы выбора других электрических аппаратов:

Эксплуатация и ремонт электрических аппаратов:

Заключение

Автоматический выключатель нужен для защиты питающего кабеля и дополнительной защиты двигателя, в случае затяжного пуска или заклинивания вала, дополнительно лучше использовать тепловую защиту. Магнитный пускатель должен выдерживать как напряжение, так и ток, который он будет коммутировать.

Электродвигатель должен быть исправен, отсутствовать витковые замыкания, а его вал должен свободно вращаться. В случае пуска двигателя под нагрузкой лучше брать коммутационную аппаратуру с запасом до 2-х раз для уменьшения вероятности преждевременного подгорания контактов и ложных срабатываний автоматического выключателя.

Питающий кабель должен соответствовать номинальному току, с учетом пусковых токов, как и способ соединения кабеля (использование гильз, наконечников, клеммников и прочего). Состояние всех соединений должно быть в норме – отсутствовать окислы, нагар и прочие механические дефекты, которые могут уменьшить площадь прилягания контакта.

УСТРОЙСТВА ЗАЩИТЫ ЭЛЕКТРОДВИГАТЕЛЕЙ

Токозависимые защитные устройства имеют разный принцип действия и несут в себе различные функции, направленные на защиту электродвигателя .

Предохранители
Предохранители предназначены для защиты электрических сетей от перегрузок и коротких замыканий. Конструктивно они состоят из корпуса из электроизоляционного материала и плавкой вставки, выбираемой из такого расчета, чтобы она плавилась прежде, чем температура двигателя достигнет опасных пределов в результате протекания токов перегруза или короткого замыкания. Включаются предохранители последовательно защищаемой сети. Предохранители способны защитить асинхронные электродвигатели, (далее по тексту АД), только от токов короткого замыкания в 10-100 раз превышающие номинальные токи. Токи же перегруза или другие токовые аварии, они будут воспринимать как пусковые токи, не реагируя на них. В лучшем случае, они способны отключить электродвигатель только через несколько минут, что может привести к перегреву обмоток и к аварии АД. Поэтому, для защиты электродвигателей от короткого замыкания в нем самом или в подводящем кабеле, используют предохранители с плавкой вставкой типа аМ с более пологой токо-временной характеристикой. Они способны выдерживать, не расплавляясь, токи в 5-10 раз превышающие номинальные в течение 10 с, что вполне достаточно для запуска двигателя. Для защиты от перегрузки необходимо использовать другие устройства. Предохранители абсолютно не способны защищать от аварий, связанных с авариями сетевого напряжения, от аварий, связанных с нарушением режимов работы АД или тепловым перегрузом, а также от режима холостого хода двигателя. В то же время, при однофазном коротком замыкании, а иногда при сильном перекосе фаз они, как правило, отключают только одну фазу, что приводит к аварийному режиму работы на двух фазах.

Автоматические выключатели (автоматы)
Автоматические выключатели (автоматы) предназначены для включения и отключения асинхронных электродвигателей и других приемников электроэнергии, а также для защиты их от токов перегрузки и короткого замыкания. Автоматы совмещают в себе функцию рубильника, предохранителя и теплового реле. Обеспечивают одновременное отключение всех трех фаз в случае возникновения аварийных ситуаций. В рабочем режиме включение и отключение производится вручную; в аварийном режиме он отключается автоматически электромагнитным или тепловым расцепителем. Важной составной частью автомата является расцепитель, который контролирует заданный параметр защищаемой сети и воздействует на расцепляющее устройство, отключающее автомат. Наибольшее распространение получили расцепители следующих типов:

  1. электромагнитные, для защиты от токов короткого замыкания;
  2. тепловые для защиты от перегрузок;
  3. комбинированные.

Электромагнитный расцепитель состоит из катушки с подвижным сердечником и возвратной пружины. При протекании по катушке тока короткого замыкания сердечник мгновенно втягивается и воздействует на отключающую рейку механизма свободного расцепления.

Тепловой расцепитель представляет собой биметаллическую пластину, соединенную последовательно с контактом. При нагревании ее током перегрузки она изгибается и воздействует на отключающую рейку механизма свободного расцепления с обратно-зависимой выдержкой времени.

Выбор автоматических выключателей производится по номинальному току, характеристике срабатывания, отключающей способности, условиям монтажа и эксплуатации. Правильный выбор характеристики автоматического выключателя является залогом его своевременного срабатывания.

В соответствии со стандартами IEC 898 (стандарт международной электротехнической комиссии) и EN 60898 (европейская норма) по характеристикам срабатывания выключатели бывают трех типов: B, C, D.

Читайте так же:
Количество теплоты при нагреве током

Тип B — величина тока срабатывания магнитного расцепителя равна Iв= KIн, при K=3–6 (K=I/Iн – кратность тока к номинальному значению). Бытовое применение, где ток нагрузки невысокий и ток к. з. может попасть в зону работы теплового, а не электромагнитного расцепителя.

Тип C — величина тока срабатывания магнитного расцепителя Iс= KIн, при K=5–10. Бытовое и промышленное применение: для двигателей с временем пуска до 1 сек, нагрузки с малыми индуктивными токами (холодильных машин и кондиционеров).

Тип D — величина тока срабатывания магнитного расцепителя более 10Iн. Применение для мощных двигателей с затяжным временем пуска.

Для выбора автоматического выключателя по отключающей способности необходимо выполнить расчет ожидаемого тока короткого замыкания. Как показывает практика, для большинства типа сетей его значение не превышает 4,5 кА. Для обеспечения контроля за другими видами аварий автоматические выключатели снабжают целым рядом дополнительных устройств. Расцепитель минимального напряжения отключает автомат при недопустимом снижении напряжения, ниже 0,7Uн, расцепитель нулевого напряжения срабатывает при напряжении в сети менее 0,35Uн, где Uн – номинальное напряжение в сети. Независимый расцепитель предназначен для дистанционного отключения автоматического выключателя, электромагнитный привод для дистанционного оперирования выключателем. Расцепитель токов утечки на землю обеспечивает непрерывный контроль за состоянием изоляции установки, защиту от опасности возгорания или взрыва.

Тепловые реле (расцепители)
Тепловые реле применяются для защиты электродвигателей от перегрузок недопустимой продолжительности, а также от обрыва одной из фаз. Конструктивно представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток электродвигателя, оказывающий тепловое действие. Под действием тепла происходит изгиб биметаллической пластины, приводящий в действие механизм расцепления. При этом происходит изменение состояния вспомогательных контактов, которые используются в цепях управления и сигнализации. Реле снабжаются биметаллическим температурным компенсатором с обратным прогибом по отношению к биметаллическим пластинам для компенсации зависимости от температуры окружающей среды, обладают возможностью ручного или автоматического взвода (возврата). Реле имеет шкалу, калиброванную в амперах. В соответствии с международными стандартами шкала должна соответствовать значению номинального тока двигателя, а не тока срабатывания. Ток несрабатывания реле составляет 1,05 I ном. При перегрузке электродвигателя на 20% (1,2 I ном), произойдет его срабатывание в соответствии с токовременной характеристикой.

Реле, в зависимости от конструкции, могут монтироваться непосредственно на магнитные пускатели, в корпуса пускателей или на щиты. Правильно подобранные тепловые реле защищают двигатель не только от перегрузки, но и от заклинивания ротора, перекоса фаз и от затянутого пуска.

Недостатком тепловых реле является то, что трудно подобрать реле из имеющихся в наличии так, чтобы ток теплового элемента соответствовал току электродвигателя. Кроме того, сами реле требуют защиты от короткого замыкания, поэтому в схемах должны быть предусмотрены предохранители или автоматы. Тепловые реле не способны защитить двигатель от перегрева двигателя в режиме холостого хода или недогруза. Поскольку тепловые процессы, происходящие в биметалле, носят достаточно инерционный характер, реле плохо защищает от перегруза, связанного с быстропеременной нагрузкой на валу электродвигателя. Если нагрев обмоток обусловлен неисправностью вентилятора (погнуты лопасти или проскальзывание на валу), загрязнением оребренной поверхности двигателя, тепловое реле тоже окажется бессильным, т. к. потребляемый ток не возрастает или возрастает незначительно. В таких случаях, только встроенная тепловая защита способна обнаружить опасное повышение температуры и вовремя отключить двигатель.

Таблица выбора теплового реле типа РТЛ (для пускателей типа ПМЛ)

Тепловое реле — устройство, принцип действия, назначение

Тепловое реле – это аппарат защиты, отключающий электродвигатели при длительных перегрузках, а также при обрыве одной из фаз от сети. Тепловое реле, как правило, устанавливается после магнитного пускателя, для того, чтобы обесточить электродвигатель, отключая питание с катушки магнитного пускателя своим размыкающим контактом в цепях управления.

Литература

  • Волошин И.Ф. Касперович А.С. Шашков А.Г. Полупроводниковые термосопротивления. — Минск, 1959.
  • Нечаев Г.К. Удалов Н.П. Реле и датчик с полупроводниковыми термосопротивлениями. — 1961.
  • Туричин А.М. Электрические измерения неэлектрических величин. — 1959.
  • Агейкин Д.И. Костина Е.Н. Кузнецова Н.Н. Датчики систем автоматического контроля и регулирования. — Москва, 1959.

Области использования прибора

Электротепловые реле предназначены для предотвращения выхода из строя электромоторов от перегрузок по показателям рабочего тока, в результате которых происходит превышение нормативных показателей рабочей температуры последних. Любой электрический двигатель имеет номинальный рабочий ток. Критическое превышение этой технической характеристики в течение длительного времени приведет к перегреву обмоток силовой установки, разрушению изоляционного слоя и выходу из строя мотора в целом.

Устройство электротепловой защиты отключит электрический двигатель и не допустит аварии и выхода из строя электромотора. Термореле защиты от перегрузок применяются и в других сферах народного хозяйства, быту и производстве, но основное их предназначение — это защита электрических силовых установок от увеличения тока нагрузки до критических значений. Без этого прибора безопасно эксплуатировать электрические двигатели невозможно!

Читайте так же:
Самостоятельная работа тепловое действие тока

Конструкция и принцип работы прибора

Надежность работы энергетических установок напрямую зависит от различных перегрузок, которым данное устройство подвергается в период эксплуатации. Для каждого устройства существуют предельные величины тока и их длительность, при которых оборудование функционирует в нормальном и безопасном режиме. При номинальных значениях тока длительность работы электродвигателя или любой другой электроустановки ограничена только механической прочностью вращающихся деталей. При длительном превышении этого значения возникает аварийная ситуация.

Для обеспечения защиты электрических двигателей и другого оборудования от перегрузок широко используются устройства с биметаллическими элементами. Эти приборы работают в соответствии с законом физики, описанным учеными Джоулем и Ленце в 19 веке и определяющим зависимость выделенного тепла от силы тока на конкретном участке электрической цепи. Именно это закон является определяющим в работе электротеплового реле (расцепителя). В составе конструкции прибора имеется спираль, которая является излучателем тепла. Непосредственно рядом с ней монтируется биметаллическая пластина, реагирующая на излучаемое тепло.

Термопластины изготовлены из двух металлических сплавов с различной теплопроводностью, которые при нагреве/охлаждении меняют свою геометрию. Это свойство биметаллических элементов заложено в принцип функционирования теплового расцепителя. При любом увеличении или уменьшении тока нагрузки, рабочие пластины меняют свое пространственное расположение и механически воздействуют на толкатель, который размыкает или замыкает контактные группы термореле, подключенные к обмоткам магнитного пускателя (МП). Пускатель двигателя срабатывает и отключает нагрузку от электрической сети. Стандартная конструкция электротеплового реле представлена на следующей картинке.

На работу тепловых расцепителей с биметаллическими пластинами оказывает воздействие температура окружающего воздуха, дополнительно нагревая рабочие элементы конструкции прибора. Для исключения этого явления все устройства этого типа снабжены дополнительными компенсирующими биметаллическими пластинами, изгибающимися в противоположную сторону относительно основных элементов.

Компенсатор является регулятором тока срабатывания устройства. Для регулировки используется эксцентрик со шкалой, разделенной на две части. При повороте влево ручки компенсатора значение тока срабатывания уменьшается, а при смещении вправо соответственно увеличивается. Регулировка значений тока срабатывания расцепителя происходит путем увеличения/уменьшения зазора между толкателем и основной пластиной, за счет воздействия эксцентрика на дополнительную биметаллическую пластину.

Важно! При обрыве или отключении одной из фаз питания, в трехфазной сети, ток нагрузки в оставшихся двух фазах увеличивается, что приводит к срабатыванию электротеплового реле. Исходя из этого, можно сказать, что тепловой расцепитель является защитой электродвигателя от работы в аварийной ситуации с оборванной фазой.

Влияние внешних климатических факторов на тепловые реле

Так как деформация биметаллической пластины зависит от ее фактического нагревания, время срабатывания реле находится в прямой зависимости также от температуры окружающей среды.

И при больших контрастах следует предусматривать в качестве дополнительной функции плавную регулировку. Также для снижения такого влияния следует подбирать реле с максимально возможной температурой срабатывания, а также располагать их в тех же помещениях, где находятся объекты, предназначенные для защиты.

Напоследок необходимо отметить, что тепловые реле не предназначены для предохранения оборудования от таких внештатных ситуаций, как короткое замыкание. В этом случае они сами нуждаются в специальной защите.

Рекомендации:

-при срабатывании теплового реле, необходимо дать время для остывания тепловому расцепителю и обязательно найти причину его срабатывания (произвести тщательный осмотр электродигателя);

— в зависимости от температурных условий эксплуатации электродвигателей советую регулировать эксцентрик влево или вправо;

-периодически производить технический осмотр и ремонт теплового реле во избежание преждевременного выхода из строя!

Спасибо за внимание!

Правильный выбор тепловых реле

Основной характеристикой теплового реле является время срабатывания в зависимости от нагрузочного тока (так называемая времятоковая характеристика).

Главный критерий – номинальный ток потребления электрооборудования. Тепловое реле должно иметь соответствующие характеристики на 20-30 % выше, что обеспечивает ее срабатывание в течение соответствующей процентной перегрузки в течение 20 минут.

Схема подключения

Схемы подключения теплового реле в цепь могут существенно отличаться в зависимости от устройства. Однако ТР подключаются последовательным соединением с обмоткой двигателя или катушкой магнитного пускателя к нормально разомкнутому контакту, т.к. подключение такого рода позволяет защитить устройство от перегрузок. При превышении показателей потребления тока ТР отключает устройство от питания электросети.

В большинстве схем при подключении применяется постоянно разомкнутый контакт, который работает при последовательном соединении со стоповой кнопкой на управляющем пульте. В основном этот контакт маркируется буквами NC или Н3.

Нормально замкнутый контакт может применяться при подключении сигнализации о срабатывании защиты. Кроме того, в более сложных схемах этот контакт применяется для осуществления программного управления аварийной остановкой устройства с использованием микропроцессоров и микроконтроллеров.

Читайте так же:
Какие действия способен оказывать электрический ток магнитное тепловое

Термореле подключить достаточно просто. Для этого нужно руководствоваться следующим принципом: ТР размещается после контакторов пускателя, но перед электродвигателем, а постоянно замкнутый контакт включается последовательным соединением со стоповой кнопкой.

Виды реле тепловой защиты

Существует несколько видов реле для защиты электрических двигателей от обрыва фаз и токовых перегрузок. Все они отличаются конструкционными особенностями, типом используемых МП и применением в разных моторах.

ТРП. Однополюсный коммутационный аппарат с комбинированной системой нагрева. Предназначен для защиты асинхронных трехфазных электромоторов от токовых перегрузок. Применяется ТРП в электросетях постоянного тока с базисным напряжением в условиях нормальной работы не больше 440 В. Отличается устойчивостью к вибрациям и ударам.

РТЛ. Обеспечивают двигателям защиту в таких случаях:

  • при выпадении одной из трех фаз;
  • асимметрии токов и перегрузок;
  • затянутого пуска;
  • заклинивания исполнительного механизма.

Их можно устанавливать с клеммами КРЛ отдельно от магнитных пускателей или монтировать непосредственно на ПМЛ. Устанавливаются на рейках стандартного типа, класс защиты – IP20.

РТТ. Защищают асинхронные трехфазные машины с короткозамкнутым ротором от затянутого старта механизма, длительных перегрузок и асимметрии, то есть перекоса фаз.

РТТ могут быть использованы в качестве комплектующих частей в различных схемах управления электроприводами, а также для интеграции в пускатели серии ПМА

ТРН. Двухфазные коммутаторы, которые контролируют пуск электроустановки и режим работы мотора. Практически не зависят от температуры внешней среды, имеют только систему ручного возврата контактов в начальное состояние. Их можно использовать в сетях постоянного тока.

РТИ. Электрические переключающие аппараты с постоянным, хоть и небольшим потреблением электроэнергии. Монтируются на контакторах серии КМИ. Работают вместе с предохранителями/автоматическими выключателями.

Твердотельные токовые реле. Представляют собой небольшие электронные устройства на три фазы, в конструкции которых нет подвижных частей.

Функционируют по принципу вычисления средних значений температур двигателя, осуществляя для этого постоянный мониторинг рабочего и пускового тока. Отличаются невосприимчивостью к изменениям в окружающей среде, а потому используются во взрывоопасных зонах.

РТК. Пусковые коммутаторы для контроля температуры в корпусе электрооборудования. Используются в схемах автоматики, где тепловые реле выступают в качестве комплектующих деталей.

Чтобы обеспечить надежную работу электрооборудования, релейный элемент должен обладать такими качествами, как чувствительность и быстродействие, а также селективность

Важно помнить, что ни один вид из выше рассмотренных приборов не является пригодным для защиты цепей от короткого замыкания.

Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке.

Электрооборудование может перегореть еще до начала срабатывания реле. Для комплексной защиты их нужно дополнять предохранителями или компактными автоматическими выключателями модульной конструкции.

КАК ПРАВИЛЬНО ВЫБРАТЬ НУЖНОЕ ТЕПЛОВОЕ РЕЛЕ

Для правильного выбора модели теплового реле нужно ориентироваться на мощностные параметры защищаемого электродвигателя. Основные характеристики устройства отображаются в условном обозначении. В маркировке теплового реле в обязательном порядке присутствуют следующие данные:

  • диапазон токов установки;
  • климатическое исполнение;
  • режим возврата теплового реле (ручной или автоматический).

При выборе теплового реле рекомендуем учитывать и такие аспекты:

  • некоторые разновидности имеют функцию недогрузки, позволяющую выявить уменьшение тока в цепи;
  • устройства могут иметь опцию компенсации температуры внешней среды — такие считаются самыми удобными и надежными;
  • выпускаются приборы, дополненные световыми индикаторами. Датчики или светодиоды отображают сигналы состояния и включения.

С нами можно связаться

По электронной почте:

Преимущества устройства

По своей сути, тепловое реле является автоматическим устройством отключения электрооборудования от сети питания. Но в отличие от простого автомата включения/отключения электротепловое реле имеет ряд следующих существенных преимуществ:

  • возможность регулировки времени и момента срабатывания в зависимости от тока перегрузки и длительности его воздействия на электрооборудование;
  • разные варианты коммутации: дистанционный монтаж в электрических щитах или непосредственная установка на магнитных пускателях.

К другим достоинствам тепловых реле можно отнести малые габариты, массу и, конечно же, стоимость, а также простоту конструкции и высокую эксплуатационную надежность. Определенным недостатком устройства является необходимость в периодических настройках и поверках.

Заключение

Электротепловое реле (расцепитель) — это один из самых важных элементов системы защиты электрических двигателей и другого электрооборудования. Данное устройство способно защитить электроустановку от любых перегрузок. Тепловой расцепитель не подвержен ложным отключениям нагрузки при кратковременных скачках тока, что выгодно отличает его от входного автомата. Термореле защиты можно монтировать не только совместно с МП, но и как самостоятельное защитное устройство.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector