Sibprompost.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловое действие тока в электронагревательных приборах»

«тепловое действие тока в электронагревательных приборах»

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №53» г. Брянска

НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ ШКОЛЬНИКОВ

«ПЕРВЫЕ ШАГИ В НАУКУ»

«Тепловое действие тока

в электронагревательных приборах».

ученица 11 А класса

Качурина Екатерина Александровна

Казачкина Татьяна Сергеевна

Сейчас мы живем в XXI веке — веке инноваций и информационных технологий, развитие техники далеко ушло вперед. Люди до того привыкли к этим «диковинам», что перестали уделять внимание, пропуская мимо глаз, все то, что их окружает. Не многие знают, как работают электрические чайники на их кухне, электрокипятильники, которыми они пользуются. В магазинах представлен большой ассортимент электронагревательных приборов, и я решила сравнить стоимость приборов с их качеством, именно поэтому я исследовала кпд электронагревательных приборов.

Я решила исследовать тепловое действие тока на бытовых электронагревательных приборах. Моя работа содержит знания о тепловом действии тока, его мощности; КПД и его типах, законе Джоуля-Ленца и его практическое применение. Я рассмотрела устройство электронагревательных приборов, провела практическую часть.

В исследовании, которое я провела, мною было рассчитано количество теплоты, потребляемое электронагревательными чайниками различных форм и марок, работа тока, во время процесса нагревания и КПД электронагревательных приборов. Исследование показало, что в ходе всего процесса КПД всех электронагревательных чайников было практически одинаковым, а кпд кипятильника было сравнимо с КПД электрочайников.

Результаты исследований расширяют знания по темам представленным в работе, они помогут учащимся 8 и 10 классов в проведении опытов и исследований, а так же потенциальным покупателям при покупки электронагревательных приборов.

Сравнить КПД электронагревательных приборов и проанализировать полученные данные.

Рассмотреть тепловое действие тока.

Изучить КПД электронагревательных приборов.

Познакомиться с устройством электронагревательных приборов.

Провести практическую часть и проанализировать полученный результат.

Методы работы над проектом:

анализ источников информации, проведение эксперимента, составление таблиц и диаграмм

« Электрический ток — упорядоченное движение свободных электрически заряженных частиц, например, под воздействием электрического поля».[1]

Тепловое действие тока.

«Выделение тепла при прохождении электрического тока. При
прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается.
Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Ленца — Джоуля. Его формулируют следующим образом.

Количество выделенного тепла Q равно произведению квадрата силы тока I 2 , сопротивления проводника R и времени t прохождения тока через проводник:

Если в этой формуле силу тока брать в амперах, сопротивление в Омах, а время в секундах, то получим количество выделенного тепла в джоулях. Количество выделенного тепла равно количеству электрической энергии, полученной данным проводником при прохождении по нему тока».[1]

«При наличии тока в проводнике совершается работа против сил сопротивления. Эта работа выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени.

Согласно закону Джоуля — Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

Мощность измеряется в ваттах».[2]

Коэффициент полезного действия

«Коэффициент полезного действия (кпд) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно h = Wпол/Wcyм.КПД является безразмерной величиной и часто измеряется в процентах. Математически определение КПД может быть записано в виде:

г де А— полезная работа, Q -затраченная работа

В силу закона сохранения энергии КПД всегда меньше единицы или равен ей, то есть невозможно получить полезной работы больше, чем затрачено энергии».[2]

«Различают КПД отдельного элемента (ступени) машины или устройства и КПД, характеризующий всю цепь преобразований энергии в системе.

КПД первого типа в соответствии с характером преобразования энергии может быть механическим, термическим и т. д.

Ко второму типу относятся общий, экономический, технический и др. виды КПД. Общий КПД системы равен произведению частных кпд, или кпд ступеней».[2]

Закон Джоуля— Ленца

«Закон Джоуля— Ленца — физический закон , дающий количественную оценку теплового действия электрического тока . Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцом .

В словесной формулировке звучит следующим образом

Мощность тепла , выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Математически может быть представлен в следующей форме:

где w— мощность выделения тепла в единице объёма, математической форме этот закон имеет вид

Где Q – количество теплоты необходимое для нагревания воды (полезное количество теплоты), А – работа электрического тока (затраченная работа).

где с – удельная теплоемкость воды (берем из таблицы),

ρ – плотность воды,

t 2 , t 1 – конечная и начальная температуры воды при нагревании.

P – потребляемая прибором мощность,

t – время закипания

электрические чайники различных фирм,

термометр для измерения температуры воды.

Определить потребляемую мощность чайника и кипятильника по паспорту прибора.

Наполнить чайник водой известного объема

Измерить температуру воды термометром

Включить чайник и довести воду до кипения. Измерить время закипания.

Рассчитать количество теплоты, которое потребовалось для нагревания воды по формуле (2).

Рассчитать работу электрического тока по формуле (3).

Рассчитать КПД по формуле (1).

Провести измерения для кипятильника и для чайников различных фирм. Результаты занести в таблицу и сделать выводы

В результате выполнения работы я определила КПД кипятильника и чайников.

КПД кипятильника оказался для нас неожиданно большим, и сравним с КПД чайников. Как я и ожидала КПД чайников мало отличаются друг от друга. Самый большой КПД у чайников «Siemens» и «Bork».

В чайнике «Braun» было совсем небольшое количество накипи, его КПД оказался самым маленьким. Я думаю, что именно присутствие накипи значительно снижает КПД.

В январе 2012 года я сформулировала заключение проекта и дополнила приложение своей исследовательской работы. Проанализировав полученные результаты, я составила диаграммы, которые показывают зависимость качества прибора от его цены. (Цифрами на диаграммах представлены чайники в той последовательности, в которой они указаны в таблицы выше).

И пришла к следующим выводам: КПД электронагревательных приборов мало отличалось друг от друга, но стоимость многих из них превышала показатель качества. Самим высоким показателем качества обладают чайники марок: «Philips», «Siemens», «Bork», низким чайник под маркой «Braun», но показатель его стоимости выше других чайников.

Но все-таки безопаснее и удобнее пользоваться электрочайниками, чем кипятильниками.

Я провела исследования, основанные на принципах КПД. В ходе работы я выяснила, что принцип действия большинства электронагревательных приборов основан на законе Джоуля-Ленца и КПД .

Данная работа может быть использована в качестве дополнительного материала при изучении темы КПД в 8 и 10 классах, а так же потенциальным покупателям поможет при покупки электронагревательных приборов.

В ходе моей исследовательской работы я выяснила КПД электронагревательных приборов, сравнила полученные результаты между собой и сделала выводы. Как я и ожидала КПД чайников, мало отличаются друг от друга. Самый большой КПД у чайников «Siemens» и «Bork». КПД кипятильника оказался для нас неожиданно большим, и сравним с КПД чайников, что говорит о качестве его работы. В чайнике «Braun» было совсем небольшое количество накипи, его КПД оказался самым маленьким. Я думаю, что именно присутствие накипи значительно снижает КПД. Этот вопрос я рассмотрю в следующей работе.

Читайте так же:
Плюсы теплового действия электрического тока

В процессе работы над проектом я достигла всех целей и задач, поставленных мною выше. Работа над проектом оказалась интересной и увлекательной.

Список источников литературы.

5 Буянтуев А.Б. Основы научных исследований. Лабораторный практикум.

3 Джоуля — Ленца закон // Большая советская энциклопедия .

2 Пёрышкин А. В. Физика. 8 класс — Дрофа, 2005. — 191 с. — 50 000 экз.

4 Сивухин Д. В. Общий курс физики — М.: Наука , 1977. — Т. III. Электричество. — С. 186. — 688 с

Постоянный электрический ток. Характеристики электрической цепи. Действие электрического тока и правила техники безопасности. — презентация

Презентация была опубликована 7 лет назад пользователемОльга Воеводина

Похожие презентации

Презентация на тему: » Постоянный электрический ток. Характеристики электрической цепи. Действие электрического тока и правила техники безопасности.» — Транскрипт:

1 Постоянный электрический ток. Характеристики электрической цепи. Действие электрического тока и правила техники безопасности.

2 Задачи: Рассмотреть Физическую природу электрического тока (газы, жидкости, металлы). Понятия: сила тока, напряжение и сопротивление. Действие электрического тока и применение в бытовых приборах. Технику безопасности и меры первой медицинской помощи. Цель: Определить спектр действия электрического тока и меры безопасности Актуальность: При эксплуатации электрических приборов необходимо соблюдать ряд правил.

3 Электрический ток Непрерывное движение заряженных частиц в замкнутой цепи от источника (генератора) до потребителя (электродвигателей, лампочек освещения) по проводнику (проводу), соединяющему эти элементы. Электрический цепь — совокупность устройств, предназначенных для протекания электрического тока.

4 Механическое действие тока Каждый проводник, по которому течет электрический ток, образует вокруг себя магнитное силовое поле. Эти магнитные действия превращаются в движение в электромоторах, в магнитных подъемных устройствах, в магнитных вентилях и в реле.

5 Световое действие тока В лампах накаливания электрический ток нагревает проволоку из вольфрама до белого каления, так что она излучает свет. При этом 95% электроэнергии превращается в тепловую и только 5% превращается в световую энергию. В люминесцентных лампах используются свойства определенных газов, например неона или паров ртути, светиться при прохождении через них электрического тока. Коэффициент полезного действия таких ламп составляет от 15 до 20%.

6 Тепловое действие тока Во всех проводниках поток электронов ограничивается сопротивлением проводника. При этом проводник нагревается. Тепловое действие электрического тока используется: в электрокипятильниках, кухонных плитах, электропаяльниках, плавких предохранителях и при дуговой электросварке.

7 Химическое действие тока Электропроводящие жидкости (электролиты) содержат ионы как носители напряжения. Если пропускать через электролит электрический ток, то к положительному полюсу будут притягиваться отрицательно заряженные ионы, а к отрицательному полюсу положительно заряженные ионы. Это явление называют электролизом. Его используют для разложения воды на составляющие ее части, при нанесении гальванических покрытий и при получении чистых металлов.

8 Магнитное действие тока Явление взаимодействия катушки с током и магнита используют в устройстве приборов, измеряющих электрические величины. Стрелка прибора связана с подвижной катушкой, находящейся в магнитном поле. Когда в катушке существует электрический ток, стрелка отклоняется. Так можно судить о наличии тока в цепи. Магнитное действие наблюдается всегда, какой бы проводник ни был: твёрдый, жидкий или газообразный.

9 Постоянный ток Постоянным называется электрический ток, который с течением времени не изменяет своего направления и величины при прохождении по замкнутой электрической цепи. Генератор является источником постоянного тока, в котором осуществляется преобразование механической энергии в электрическую.

10 Сила тока Это количество электричества, прошедшее через поперечное сечение проводника в течение одной секунды. [ I ] = 1 A (ампер) = Кл : с Амперметр – измерительный прибор для определения силы постоянного и переменного тока в электрической цепи. Показания амперметра зависят от величины протекающего через него тока, в связи, с чем сопротивление амперметра по сравнению с сопротивлением нагрузки должно быть как можно меньшим. I = U : R = q : t

11 Напряжение Это величина, численно равная работе по перемещению единицы электрического заряда между двумя произвольными точками электрической цепи. U = I R = A : q [ U ] = 1 В (вольт) = Дж : Кл Вольтметр — электрический прибор для измерения или напряжений в электрических цепях. Вольтметр включается параллельно нагрузке или источнику электрической энергии.

12 Сопротивление Скалярная физическая величина, характеризующая свойства проводника и равная отношению напряжения на концах проводника к силе электрического тока, протекающего по нему. R = U : I = ρ l : S Удельное электрическое сопротивление (табличное значение) показывает сопротивление проводника данного материала длинной 1 м и площадью поперечного сечения 1 мм ². 1 м и площадью поперечного сечения 1 мм ². [ R ] = 1 Ом = В : А Омметр – это измерительный прибор специализированного назначения, предназначенный для определения сопротивления электрического тока.

13 Закон Ома для участка цепи Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка. Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка. I = U : R I = U : R I сила тока (А), U напряжение (В), R сопротивление (Ом). I сила тока (А), U напряжение (В), R сопротивление (Ом).

14 Проводники и диэлектрики Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному. Способность проводников пропускать через себя электрические заряды объясняется наличием в них свободных носителей заряда (металлические тела в твердом и жидком состоянии, жидкие растворы электролитов). Диэлектриками, изоляторами, называются тела, через которые электрические заряды не могут переходить от заряженного тела — к незаряженному (воздух и стекло, плексиглас и эбонит, сухое дерево и бумага).

15 Электрический ток в металлах Это упорядоченное движение электронов под действием внешнего электрического поля. При протекании тока по металлическому проводнику не происходит переноса вещества, ионы металла, создающие кристаллическую решетку, не принимают участия в переносе электрического заряда.

16 Электрический ток в жидкостях Есть в природе проводники электрического тока второго рода (электролиты), в которых во время прохождения тока происходят химические явления. К ним относятся различные растворы в воде кислот, солей и щелочей, расплавы металлов. Электрический ток в жидкостях – это упорядоченное движение положительных и отрицательный ионов под действием внешнего электрического поля. Если в стеклянный сосуд налить воды и прибавить в нее несколько капель серной кислоты (другой кислоты или щелочи), взять две металлические пластины и присоединить к ним проводники, опустив пластины в сосуд, а к другим концам проводников подключить источник тока, то произойдет выделение газа из раствора. Причем оно будет продолжаться непрерывно, пока замкнута цепь.

17 Электролиз Явление, происходящее в электролите при прохождении через него электрического тока, электролизом. Металлические пластины, опущенные в электролит, называются электродами: соединенная с положительным полюсом источника тока — анод, другая, соединенная с отрицательным полюсом, катод.

18 Электрический ток в газах При обычных условиях все газы являются диэлектриками. Этим свойством объясняется широкое использование воздуха в качестве изолирующего вещества. Нагревание газа до высоких температур, использование ультрафиолетового или рентгеновского излучений, потока альфа- частиц или электронов – способы превращения газа в проводник. Действие любой из этих причин приводит к ионизации молекул газа. При этом от некоторых молекул отрывается один или несколько электронов, молекула превращается в положительный ион. Под воздействием электрического поля, образовавшиеся ионы и электроны начинают двигаться, создавая электрический ток. Нагревание газа до высоких температур, использование ультрафиолетового или рентгеновского излучений, потока альфа- частиц или электронов – способы превращения газа в проводник. Действие любой из этих причин приводит к ионизации молекул газа. При этом от некоторых молекул отрывается один или несколько электронов, молекула превращается в положительный ион. Под воздействием электрического поля, образовавшиеся ионы и электроны начинают двигаться, создавая электрический ток.

Читайте так же:
Теплоотражающий костюм пожарного ток 200

19 Действие электрического тока на организм человека Действие электрического тока на организм человека своеобразно и носит разносторонний характер. Электрический ток, проходя через тело человека, оказывает термическое, электролитическое и биологическое воздействие на различные системы организма. При этом могут возникнуть нарушения деятельности жизненно важных органов человека: мозга, сердца и легких.

20 Виды поражений человека электрическим током Электрический ток, протекающий через организм человека, воздействует на него термически, электролитически и биологически. Термическое действие характеризуется нагревом тканей, вплоть до ожогов Термическое действие характеризуется нагревом тканей, вплоть до ожогов Электролитическое разложением органических жидкостей, в том числе и крови Электролитическое разложением органических жидкостей, в том числе и крови Биологическое действие электрического тока проявляется в нарушении биоэлектрических процессов и сопровождается раздражением и возбуждением живых тканей и сокращением мышц. Биологическое действие электрического тока проявляется в нарушении биоэлектрических процессов и сопровождается раздражением и возбуждением живых тканей и сокращением мышц.

21 Электрические травмы Ожог может быть вызван прохождением электрического тока через тело человека с силой более 1А или воздействием на него электрической дуги. Ожоги могут быть поверхностные и внутренние. Металлизация кожи возникает вследствие проникновения в ее верхние слои мельчайших частиц металла, испарившегося под действием электрической дуги. Электрические знаки представляют собой пятна серого или бледно-желтого цвета в виде мозоли на поверхности кожи в месте контакта с токоведущими частями. Электрические знаки безболезненны и с течением времени сходят. Механические повреждения являются следствием непроизвольных сокращений мышц организма под действием тока. При этом возможны разрывы кожи, кровеносных сосудов и нервной ткани, вывихи суставов и даже переломы костей. Электроофтальмия — поражение глаз, вызванное интенсивным излучением электрической дуги, в спектре которой имеются вредные для глаз ультрафиолетовые и инфракрасные лучи.

23 Первая помощь при ударе током Обеспечьте свою безопасность. По возможности отключите источник тока. Подходите к пострадавшему мелкими шагами по 10 см. Обеспечьте свою безопасность. По возможности отключите источник тока. Подходите к пострадавшему мелкими шагами по 10 см. Отпихните пострадавшего от источника тока при помощи деревянного стула или швабры (предмет должен быть неэлектропроводным). До того, как это будет сделано, пострадавший может ударить током любого, кто к нему прикоснется. Отпихните пострадавшего от источника тока при помощи деревянного стула или швабры (предмет должен быть неэлектропроводным). До того, как это будет сделано, пострадавший может ударить током любого, кто к нему прикоснется. Пошлите кого-нибудь за медицинской помощью. Проверьте дыхание пострадавшего и при необходимости сделайте ему искусственное дыхание «рот в рот». Если у пострадавшего отсутствует сердцебиение, сделайте ему массаж сердца. Пошлите кого-нибудь за медицинской помощью. Проверьте дыхание пострадавшего и при необходимости сделайте ему искусственное дыхание «рот в рот». Если у пострадавшего отсутствует сердцебиение, сделайте ему массаж сердца. Если пострадавший пришел в сознание, укройте и согрейте его. Если пострадавший пришел в сознание, укройте и согрейте его.

24 Экспериментальная часть для проектной работы Цель : Цель : Получение электрического тока из фруктов и овощей. Задача: Создать фруктовую и овощную батарейку. Предмет исследования: Получения электрического тока. Гипотеза: Из фруктов и овощей можно сделать батарейку.

25 Ход исследования Для создания батарейки понадобится цинковая пластина, медная проволока, фрукт или овощ. В самодельном гальваническом элементе цинковая пластина действует как отрицательный электрод, а медная проволочка – как положительный. Электролитом (жидкость проводящая ток) является сок фруктов и овощей. Можно сделать гальванические элементы из различных овощей и фруктов: лимон, яблоко, картошка, помидор. В каждом элементе был сделан замер напряжения с помощью вольтметра.

26 Результаты измерений Фрукты и овощи Напряжение, В Фрукты и овощи Напряжение, В Лимон 0,97 Лимон 0,97 Яблоко 0,95 Яблоко 0,95 Картошка 0,82 Картошка 0,82 Помидор 0,9 Помидор 0,9 Где же в жизни можно применять это свойство овощей и фруктов? Можно зажечь светодиод, для этого достаточно напряжение в 3 В, что соответствует 4 картофелинам или 4 лимонам.

27 Домашние опыты Магнитное действие токаИсточник тока

28 Выводы Используя фрукты и овощи можно создать батарейку, однако не любой фрукт или овощ для этого подходит. Полученный источник тока можно использовать для приборов с низким потреблением энергии. Для более мощной батарейки надо много овощей и фруктов.

Урок «Тепловое действие тока. Закон Джоуля-Ленца. Работа и мощность электрического тока»

Тема урока: Тепловое действие тока. Закон

Джоуля-Ленца. Работа и мощность электрического тока.

Разъяснить сущность понятий работа и мощность тока.

Обучить обучающихся методу решения задач на расчет количества тепла, выделившейся в проводнике, с целью осознания возможности управления физическими процессами с помощью объектов бытовой техники и техники применяемой при работе по данной профессии.

Научить обучающихся измерять параметры реальных технических устройств профессионального назначения и бытового (электроплитки, миксера, кофеварки, электрочайника) проводить расчеты.

В процессе урока развивать логическое мышление, интерес к изучаемому предмету.

Расширить политехнический кругозор обучающихся.

На примере перехода неэлектрических видов энергии в энергию электрического поля в источниках тока и перехода энергии электрического поля в неэлектрические виды энергии в электрических цепях, показать, что энергия в природе не создается и не уничтожается, а только переходит из одного вида энергии в другой.

Основные знания и умения

1. Знать и уметь применять в решении задач формулы работы и мощности, закон Джоуля — Ленца.

Уметь рассчитывать стоимость электрической энергии.

Знать практическое применение теплового действия тока.

Тип урока. Комбинированный с применением поурочной карты

Оснащение урока: мультимедийный проектор, презентация, гальванометр, термистор, источник питания, панели с параллельным и последовательным соединением лампочек, лампа накаливания, структурно-логические схемы,

I . Организационный момент (2 мин.).

П. Актуализация знаний (20 мин.).

1. Определить внутреннее сопротивление источника электрической энергии, э.д.с. которого 12В, если при внешнем сопротивлении 23 Ом сила тока в цепи 0,5 А.

Три источника электрической энергии с э.д.с.

1,1. В и внутренним сопротивлением 0,9 Ом каждый соединены последовательно с разноименными полюсами и замкнуты на внешнюю цепь сопротивлением 3,9 Ом. Определить силу тока в цепи.

3. Дать понятие сверхпроводимости.

Дать понятие работы сторонних сил, э.д.с. Вывести формулу для закона Ома для полной цепи.

План изучения нового материала

а) понятие работы электрического тока;

б) зависимость работы, мощности и количества теплоты от сопротивления
резисторов при последовательном и параллельном соединении;

в) тепловое действие тока. Закон Джоуля- Ленца.

г) вывод формул мощности электрического тока. Единицы мощности;

д) применение теплового действия в быту и профессиональной деятельности

е) решение компетентностно- ориентированных заданий

III . Изучение нового материала (40 мин.).

а) В электрической цепи происходит ряд превращений энергии. При упорядочном движении заряженных частиц в проводнике электрическое поле совершает работу. Эту работу принято называть «работой тока».

Вычислить значение работы, совершаемой электрическим полем на произвольном участке цепи. Это может быть однородный проводник, например спираль электроплитки, обмотка электродвигателя холодильника.

Читайте так же:
Принцип провода теплого пола

Пусть за время Δ t через поперечное сечение проводника проходит заряд Q . Тогда электрическое поле совершит работу A = QU , т.к. I = Q / Δ t ( Q = I Δ t ; A = I Δ t U ,

ВЫВОД: Работа тока на участке цепи равна произведению силы тока на напряжение и на время в течении которого совершалась работа.

Согласно закону сохранения энергии эта работа должна быть равна изменению энергии рассматриваемого участка цепи. Поэтому энергия, выделяемая на данном участке цепи за время Δ t , равна работе тока.

Если никаких движущихся проводников на участке нет, то увеличивается внутренняя энергия участка цепи.

В однородном проводнике увеличение внутренней энергии означает повышение его температуры.

Действительно, проводник с током нагревается и отдает теплоту окружающим телам.

Проблема: Каким образом это происходит?

Электрическое поле ускоряет электроны. После столкновения с ионами кристаллической решетке они передают ионам свою энергию. В результате энергия хаотического движения около положения равновесия возрастает. Это и означает увеличение внутренней энергии. Температура проводника повышается, и он начинает передавать теплоту окружающим телам. Спустя небольшое время после замыкания цепи процесс устанавливается и температура перестает изменяться со временем.

К проводнику за счет работы электрического поля непрерывно поступает энергия. Но его внутренняя энергия остается неизменной, т.к. проводник передает окружающим телам количество теплоты равное работе тока.

Таким образом, формула A = IU Δ t для работы тока определяет в случае однородного проводника количество теплоты, передаваемое проводником другим телам.

б) Сформулируйте закон Ома для участка цепи I = U / R .

Это значение силы тока используется в формуле для работы тока A = IU Δ t = ( U / R ) U Δ t =( U 2 / R ) Δ t ; A =( U 2 / R ) Δ t .

Выразить напряжение через силу тока, используя также закон Ома для участка цепи и это выражение применим в формуле A = IU Δ t ; I = U / R → U = IR ; A = IU Δ t → A = I 2 R Δ t .

Необходимо считать, что формулы A =( U 2 / R ) Δ t ; A = I 2 R Δ t эквивалентны. Формулой A = I 2 R Δ t удобно пользоваться для последовательного соединения проводников, т.к. сила тока одинаково во всех проводниках.

При параллельном соединении удобна формула A =( U / R ) Δ t , т.к. напряжение на всех проводниках одинаково.

в) Закон определяющий количество теплоты, которое выделяет проводник с током в окружающую среду был впервые установлен экспериментально английским ученым Д. Джоулем (1818-1889) и русским ученым Э. Х. Ленцем (1804-1861).

Закон Джоуля -Ленца был сформулирован следующим образом: Количество теплоты выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику: Q = I 2 R Δ t .

ВЫВОД: Мы получили этот закон с помощью рассуждений, основанных на законе сохранения энергии. Формула Q = I R Δ t позволяет вычислить количество теплоты выделяемое на любом участке цепи содержащим какие угодно проводники.

г) Любой электрический прибор (лампа, электродвигатель) рассчитан на потребление определенной энергии в единицу времени. Поэтому наряду с работой тока очень важное значение имеет понятие мощности тока. Мощность тока равна отношению работы тока за время Δ t к этому интервалу времени. Р=А/ Δ t = IU .

Это выражение переписываем в нескольких эквивалентных формах, если использовать закон Ома для участка цепи: Р= IU = I 2 R = U 2 / R ;

Работа, произведенная в единицу времени называется МОЩНОСТЬЮ.

Мощность измеряется прибором ваттметром, единицы измерения называются ваттами.

Кроме Ватта применяются более крупные единицы мощности.

Для практических измерений электрической работы (энергии) Джоуль является слишком мелкой единицей.

Если время подставить не в секундах, а в часах, то получим более крупные единицы электрической энергии.

1Вт ч= 3600 Вт с=3600 Дж

100 Вт ч=1 г Вт ч

Электрическая энергия измеряется счетчиком электрической энергии.

ВЫВОД: На большинстве приборов указано потребляемая ими мощность. Прохождение по проводнику электрического тока сопровождается выделением на нем энергии.

Эта энергия определяется работой тока: произведением перенесенного заряда и напряжением на концах проводника.

д) Все проводники при прохождении по ним электрического тока нагреваются и отдают тепло окружающей среде (воздуху, жидкости, твердому телу).

Температура проводника будет повышаться до тех пор, пока количество теплоты полученное проводником не станет равным количеству тепла отдаваемому проводником окружающей среде. При этом температура достигает установившегося значения.

Тепло, выделяемое током, используется в электрических печах и аппаратах прямого нагрева для процесса графитизации электродов, стекловаренной промышленности, в штамповочно-ковочном производстве, для нагрева труб, деталей цилиндрической формы.

В технике тегильные и муфельные печи, сушильные печи, шкафы.

Электрические нагревательные приборы получили очень большое распространение в домашнем быту (утюги, кипятильники, обогреватели, кофемолка, электросамовары, миксеры).

Основной частью электроплит, электросамоваров, электрочайников является проводник, в котором выделяется тепло, когда по нему течет ток.

Чаще всего проводник делают в виде спирали, которую укладывают в жаростойкие или огнеупорные основания, например из керамики и асбеста. Материалом для спиралей нагревающихся в воздухе обычно служат никром, т.е. для спиралей электроплит, т.к. спираль электрочайников, электросамоваров опускается в воду, то в этом случае для спиралей используют проволоку из реотана или никеля.

Проблема: Как вы думаете, что произойдет, если пропустить по таким спиралям ток, вынув их из воды?

(Они перегорают, т.к. воздух обладает меньшей теплопроводностью, чем вода, и поэтому воздух не может быстро уводить выделяющееся тепло).

IV . Закрепление материала (20 мин).

При закреплении используется поурочная карта.

Поурочная карта

Тема: Работа и мощность электрического тока.

Закон Джоуля-Леща. Тепловое действие тока.

Основные знания и умения.

Знать и уметь применять в решении задач формулы работы, мощности и закона Джоуля-Ленца.

Уметь рассчитывать стоимость электроэнергии.

Знать назначение и принцип действия плавких предохранителей.

Прочтите следующий текст.

Как известно, все тела состоят из молекул, и эти молекулы не находятся в покое, а непрерывно движутся. Чем выше температура, тем быстрее движение молекул, вещества этого тела.

(При прохождении электрического тока по проводнику электроны сталкиваются с движущимися молекулами проводника и усиливают их движение, что приводит к нагреву проводника.

Повышение температуры проводника происходит в результате преобразования электрической энергии в тепловую.)

Вывести выражение для работы электрического тока.

1. В цепи представленной на рис.1 приложено постоянное напряжение U , за время Δ t по цепи протекало количество электричества q . Силы электрического поля, действующие вдоль проводника, перенесли заряд q из точки А в точку В. работа электрических сил поля, или что то же, работа электрического тока может быть посчитана по формуле А = q ( φв — φ а) = q U .

В последнюю формулу поставьте формулу для определения заряда q = I Δ t , то получите А = U I Δ t .

В данную формулу подставьте значение напряжения согласно закона Ома для участка цепи U = IR , тогда получите формулу А = I 2 R Δ t — удобно пользоваться при п оследовательном соединении; А = ( U 2 / R ) Δ t — при параллельном соединении. Эти формулы эквивалентны.

Единицы измерения работы — Дж.

1 Вт ч = 3600 Ватт секунд = 3600 Дж

100 Вт ч = 1 гектоват час (гВт ч)

1000Вт ч= 1 киловат час (кВт ч)

Задание III .

Ввести формулы для подсчета мощности электрического тока.

Р-мощность электрического тока. Согласно определению Р = A/ Δ t;

Подставьте в формулы для мощности А = U I Δ t , получите Р =( UI Δ t )/ Δ t = U I , Р = U I ;

Используя закон Ома для участка цепи выразите напряжение и подставьте в конечную формулу: I = U / R ;

U = I R; Р = I U = I I R = I 2 R; P = I 2 R.

Подставьте закон Ома I = U / R в формулу

Р = UI . Получите Р = U 2 / R ;

Единицы измерения мощности — Вт. 100 Вт — 1 гектоватт (г Вт); 1000 Вт — 1 киловатт (кВт); 1000000 Вт — 1 мегаватт (мгВт).

Читайте так же:
Тепловое реле для автоматического выключателя

Тепловое действие электрического тока.

Тепловое действие электрического тока ( согласно закону Джоуля — Ленца) определяется сопротивлением биологических тканей, значением тока и временем существования электрической цепи через тело человека. Тепло, образующееся при прохождении тока через биоткани, вызывает перегрев и гибель клеток, причем наиболее выраженные изменения наблюдаются на кратчайшем пути тока. Поражения кожи в местах входа и выхода тока различны по форме и размеру в зависимости от характера контакта с токонесущими проводниками: от точечных меток до полного обугливания тканей, а распространенность некроза кожи обычно меньше, нем глубжележащих тканей. Степень поражения тканей пропорциональна их проводимости, изменяющейся в широких пределах. Биологические ткани по удельному сопротивлению в порядке его возрастания распределяются следующим образом: нервы, кровеносные сосуды, мышцы, кожа, сухожилия, жировая ткань, кости.

Просмотр содержимого документа
«Тепловое действие электрического тока. »

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ КЕМЕРОВСКОЙ ОБЛАСТИ

Государственное образовательное учреждение среднего профессионального образования

Кемеровский профессионально-технический техникум

Тепловое действие электрического тока.

Подготовил: студент группы АМ-142

Под руководством: преподавателя физики

Барсукова Юлия Николаевна

г. Кемерово 2015 г.

При протекании тока по проводнику происходит нагревание проводника. Как показывают опыты, количество выделяемой теплоты тем больше, чем больше сила тока и чем больше сопротивление проводника. Подвесим железную проволоку и пропустим по ней ток, включив в цепь реостат и амперметр. Увеличивая силу тока в цепи, наблюдаем сначала провисание проволоки от нагревания, а затем при достаточно большой силе тока красное каление. Дальнейшее увеличение силы тока может привести к перегреванию проволоки. На основании опытных данных можно утверждать, что в электрической цепи происходит ряд превращений энер­гии. При перемещении заряда вдоль электрической цепи кулоновскими и сто­ронними силами совершается работа А. Если электрическая цепь в рассматрива­емой системе координат находится в состоянии покоя, а ток, протекающий по ней, постоянен (I= const), то совершаемая работа

А = IUt. (1)

По формуле (1) можно вычислить работу, совершаемую электрическим то­ком, независимо от того, в какой вид энергии превращается электрическая энер­гия. Эта работа может пойти на увеличение внутренней энергии проводника, т.е. его нагревание, на изменение механической энергии, например на движение проводника с током в магнитном поле, и т.д.

Необратимые преобразования электрической энергии в тепловую можно объяснить взаимодействием электронов с ионами металлического проводника. Стал­киваясь с ионами металлического проводника, электроны передают им свою энер­гию. Вследствие этого увеличивается интенсивность колебаний ионов около положения равновесия. А с чем большей скоростью колеблются ионы, тем выше температура проводника. Ведь температура — это мера средней энергии хаоти­ческого движения атомов, из которых состоит проводник.

Чтобы вычислить электрическую энергию, затраченную на нагревание провод­ника, нужно знать падение напряжения на данном участке проводника U = IR. Подставляя в формулу (1) это выражение, получаем

А = I 2 Rt, или Q = I 2 Rt. (2)

Формула (2) выражает закон Джоуля — Ленца:

количество теплоты, которое выделяется в проводнике с током, пропор­ционально квадрату силы тока, времени его прохождения и сопротивле­нию проводника.

Работа электрического тока. Предположим, нас интересует механическая работа, которую совершает электродвигатель, если U напряжение сети, R сопротивление обмотки, I — сила тока, текущего по обмотке. Очевидно, что на механическую работу Амех, совершаемую двигателем, расходуется часть энергии электрического тока. При работе двигателя обмотка его будет нагреваться. На основании закона сохранения энергии можно утверждать, что энергия электрического тока (IUt) превращается в механическую (Амех) и тепловую (I 2 Rt) энергии:

IUt = Амех + I 2 Rt, Амех = IUt — I 2 Rt.

Прибор, служащий для измерения энергии электрического тока, называется электрическим счетчиком. Полная работа, совершаемая источником тока, ЭДС которого ξ определяется формуле

Единица работы электрического тока джоуль (Дж).

Мощность электрического тока. Мощность — это отношение работы электрического тока ко времени t, за которое совершается работа:

Единица мощности электрического тока — ватт (Вт).

Тепловое действие электрического тока играет большую роль в современной технике. Рассмотрим некоторые примеры его применения, тепловом действии тока основано устройство теплового гальванометра, его представлена на рис. 1. Концы металлической проволоки 2 закреплены неподвижно в металлических колодках 1 и 3. Проволока 2 выполнена из неокисляемого упругого материала. В середине проволока 2 оттягивается нитью 5, проходящей через блок 4 и скрепленной с пружиной 6. При прохождении электрического тока по проволоке 2 она нагревается и удлиняется, ее прогиб увеличивается. Вследствие этого нить 5 перемещается и поворачивает блок 4. С блоком 4 скреплена стрелка гальванометра, поэтому поворот блока соответствует отклонению стрелки на некоторый угол. Если шкала прибора градуирована в единицах силы тока, то прибор называется амперметром.

Рис. 1.

Часто используются различного типа электрические нагревательные приборы и электрические печи. К электрическим нагревательным приборам относятся плав­кие предохранители («пробки»), которые служат для устранения опасности корот­кого замыкания. Обычно это тонкие медные или свинцовые проволочки, вводимые последовательно в цепь электрического тока и рассчитанные таким образом, чтобы они плавились при токе, превышающем то значение, на которое рассчитана цепь.

К нагревательным приборам можно отнести и лампочки накаливания. Первая лампочка была изобретена в 1872 г. электротехником А. Н. Лодыгиным. Она пред­ставляла собой стеклянный баллон, в котором между толстыми медными прово­лочками укреплялся угольный стержень. При пропускании тока угольный стер­жень раскалялся и давал свет. Усовершенствованием ламп накаливания занима­лись Т. Эдисон, И. Ленгмюр и др.

В настоящее время в качестве нити накаливания ламп используется вольфра­мовая проволока с температурой плавления 3370 °С. Чем выше температура нити, тем большая часть излучаемой энергии отдается в виде света. В 1913 г. появились лампочки, баллоны которых заполнялись инертным газом (аргоном). Присутствие аргона замедляет испарение нити, и срок службы ламп увеличивается.

Лампа накаливания представлена на рис. 2. Она имеет вольфрамовую нить или спираль 1, укрепленную на металлической ножке 3, внутри которой прохо­дят проволочки 2, подводящие ток к спирали. Для откачки воздуха служит тру­бочка 4, которая после удаления воздуха запаивается. Лампа имеет металличес­кий цоколь 5 и изолированный от цоколя контакт 6, к которому припаиваются провода оси нити накаливания. Цоколь и контакт 6 при вворачивании лампочки в патрон соединяются с проводами электрической сети.

Рис. 2.

Нагревательными приборами являются электроплита, электроутюг, электро­чайник и т.д., которые нашли широкое применение в домашнем обиходе. Для со­здания высоких температур служат электрические печи. Температура внутри печи может достигать 2500-3000 °С. Для этого в печах в качестве токопроводящего: вещества применяются тугоплавкие металлы, например молибден. Электричес­кие печи нашли широкое применение в различных областях народного хозяйства. Еще одним важным применением теплового действия тока является кон­тактная сварка, которая применяется для сваривания металлов со значительным удельным сопротивлением (никель, тантал, молибден и др.).

Применение теплового действия электрического тока — Электрические явления

Цели: выяснить причины перегрузки сети и короткого замыкания, объяснить учащимся назначение предохранителей; изучить устройство лампы накаливания.

Демонстрации: устройство и принцип действия лампы накаливания; устройство и принцип действия предохранителей; устройство и принцип действия электронагревательных приборов.

I. Повторение изученного

Повторить материал, изученный на предыдущем уроке, можно в ходе фронтального опроса по теме «Закон Джоуля-Ленца»:

— В чем проявляется тепловое действие тока? При каких условиях оно наблюдается?

Читайте так же:
Модульные автоматические выключатели без теплового расцепителя

— Почему при прохождении тока проводник нагревается?

— Почему, когда по проводнику пропускают электрический ток, проводник удлиняется?

— По какой формуле можно рассчитать количество теплоты, выделяемое проводником с током?

— Как формулируется закон Джоуля-Ленца?

— Последовательно соединенные медная и железная проволоки одинаковой длины и сечения подключены к аккумулятору. В какой из них выделится большее количество теплоты за одинаковое время?

II. Применение теплового действия электрического тока

На данном уроке необходимо остановиться на использовании теплового действия тока на практике:

а) электрические лампы накаливания;

б) электрические нагревательные приборы;

в) короткое замыкание;

г) плавкие предохранители.

Следует уделить несколько минут на уроке рассмотрению вопросов о коротком замыкании, о назначении и устройстве предохранителей.

К пониманию вопроса о коротком замыкании учащиеся уже достаточно подготовлены. Им уже говорилось, что электрические цепи рассчитаны на определенную силу тока. Если сопротивление цепи по каким-либо причинам уменьшится, то сила тока возрастет и может стать больше допустимой. Естественно, при этом будут нагреваться провода, возможно воспламенение изоляции проводов и даже расплавление проводов. Такое уменьшение сопротивления цепи может возникнуть при включении параллельно дополнительных потребителей. При коротком замыкании ток может достигнуть очень большой величины и возникнет опасность пожара. Избежать этой опасности помогают предохранители.

Предохранитель — это устройство для предотвращения недопустимого и опасного действия установки, машины, аппарата, прибора, оружия и прочего, в результате нарушения нормальных условий и режимов их работы, аварий, неосторожного обращения и др. Наиболее распространены плавкие предохранители для защиты электрических сетей от токов короткого замыкания. Предохранительные клапаны нужны для защиты паровых котлов и напорных воздушных баков (ресиверов) от чрезмерного повышения давления, а также предохранители применяются в ружьях и пистолетах.

Предохранитель плавкий — это устройство для защиты электрических установок от токов коротких замыканий и перегрузок, прерывающие цепь в результате расплавления специального проводника. При возрастании тока в цепи свыше номинального значения в плавких предохранителях происходит расплавление плавких вставок и защищаемого плавкого предохранителя проводов, машин, аппаратов. Различают номинальный ток плавкого предохранителя, на который рассчитаны его токоведущий и контактные несменяемые части и номинальный ток сменяемой плавкой вставки, выполняемой на различные номинальные токи.

Чтобы предотвратить возникновение длительной электрической дуги, плавкая вставка должна иметь длину больше той, при которой может гореть дуга под данным напряжением, поэтому на плавких предохранителях кроме номинального тока, указывается также и наибольшее допустимое рабочее напряжение установки.

Достоинством плавких предохранителей является простота и дешевизна; недостатком — необходимость замены плавких вставок, что особенно затрудняется в установках высокого напряжения. Кроме того, электрические машины защищают плавкие предохранители только от токов коротких замыканий.

На уроке можно также показать фрагменты видеофильмов о применении электрического тока, например: «Из истории электрического освещения»; «Электричество служит людям»; «Работает электрический ток».

Далее заслушиваются доклады учащихся.

1. § 54, 55 учебника; вопросы к параграфу.

2. Сборник задач В. И. Лукашика, Е. В. Ивановой, № 1443, 1444, 1446.

Первые точные опыты, доказывающие эквивалентность количества теплоты, переданного телу, и работы, были выполнены английским ученым Д. Джоулем в середине XIX в.

Интерес к проблеме впервые возник у Джоуля из знакомства с электрическими двигателями, которые только что были изобретены. Джоуль был человеком весьма практического склада ума, и его увлекла идея создать вечный источник энергии. Он изготовил вольтову батарею, запустил от нее примитивный электродвигатель собственной конструкции и увидел, что получить нечто из ничего не удается: цинк в батарее съедался, и замена его обходилась довольно дорого. (Позже Джоуль доказал, к своему собственному удовольствию, что прокормить лошадь всегда дешевле, чем менять цинк в батареях, так что лошадь никогда не будет вытеснена электродвигателем.) Это побудило Джоуля исследовать связь между теплотой и энергией всех видов, и он решил выяснить, существует ли точное количественное соотношение между теплотой и механической энергией.

Джоуль пришел к следующему результату: при совершении работы 4,2 Дж происходит такое же повышение температуры, как и при сообщении телу количества теплоты, равного 1 кал.

Многочисленные последующие опыты самого Джоуля и других ученых подтвердили сделанный вывод. Было экспериментально доказано, что калория есть не что иное, как тепловая единица энергии. Величина 4,2 Дж/кап (или, точнее, 4,1868 Дж/кап) получила название механического эквивалента теплоты: это переводной множитель из тепловых единиц в механические.

В СИ количество теплоты выражают в джоулях, а удельную теплоемкость — в джоулях на килограмм — кельвин. Для воды удельная теплоемкость примерно равна 4190 Дж / (кг · К).

Томас Алва Эдисон (1847-1931)

Томас Алва Эдисон родился в 1847 году. Жил он в маленьком городишке США. Его считали в школе ленивым учеником, хотя внимательный учитель мог бы заметить в нем природную любознательность и склонность к исследованиям. В подвале дома он устроил химическую лабораторию и ставил там различные опыты.

В 12 лет Томас бросил школу и стал разносчиком газет. Потом он освоил профессию телеграфиста, блестяще изучил технику телеграфирования, телеграфный аппарат. Первое изобретение Эдисона связано именно с телеграфным аппаратом. Эдисон сконструировал приставку, которая автоматически и периодически посылала условный сигнал на станцию, подтверждающий, что телеграфист бдительно дежурит у аппарата.

С тех пор в течение более чем 60 лет Эдисон вел напряженную изобретатель? скую работу, хлопотал о внедрении своих технических новшеств в производство.

Эдисон проявлял энергию и упорство в достижении поставленной цели. Так, поставив перед собой задачу создать завод по производству карболовой кислоты, он почти не выходил из лаборатории, но проблему он решил. Для того чтобы создать щелочной аккумулятор, он провел десятки тысяч опытов.

В 1878 г. Эдисон обратился к проблеме электрического освещения, пошел по пути усовершенствования лампы накаливания А. Н. Лодыгина.

За один год он провел 6000 опытов в поисках наилучшего материала для нити лампы накаливания. И хотя лампы Эдисона получили признание, все же лучший материал для нитей — вольфрам предложил А. Н. Лодыгин; нити из вольфрама используются до сих пор в большинстве ламп накаливания.

Телефон изобрел А. Белл, а Эдисон внес в него значительные усовершенствования, которые устраняли посторонние шумы и позволяли хорошо слышать собеседника на любом расстоянии.

Эдисон развивал идеи предшественников, теперь изобретатели разных стран шли по открытому им пути: были созданы граммофон, патефон, электрофон.

Умер Эдисон в 1931 году.

Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2021 Все права на дизайн сайта принадлежат С.Є.А.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector