Sibprompost.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемы подключения трехфазного электродвигателя

Схемы подключения трехфазного электродвигателя

1. Подключение трехфазного электродвигателя – общая схема

Когда электрик устраивается работать на любое промышленное предприятие, он должен понимать, что ему придётся иметь дело с большим количеством трехфазных электродвигателей. И любой уважающий себя электрик (я не говорю о тех, кто делает проводку в квартире) должен чётко знать схему подключения трёхфазного двигателя.

Сразу приношу извинения, что в данной статье я часто контактор называю пускателем, хотя подробно объяснял уже, что пускатель и контактор – это разные вещи. Что поделать, приелось это название.

В статье пойдёт речь о схемах подключения наиболее распространенного асинхронного электродвигателя через магнитный пускатель. Но не только. Расскажу также от способах и принципах защиты двигателя от перегрева и перегрузки.

Будут рассмотрены различные схемы подключения электродвигателей , их плюсы и минусы. От простого к сложному. Схемы, которые могут быть использованы в реальной жизни, обозначены: ПРАКТИЧЕСКАЯ СХЕМА. Итак, начинаем.

Подключение трехфазного двигателя

Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.

Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.

По принципам построения сетей 380В я уже подробно писал в статьях про трехфазный счетчик и реле напряжения.

В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?

2. Подключение двигателя через рубильник или выключатель

Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.

Подробнее про замену и установку автоматических выключателей – здесь. А про их параметры и выбор – здесь.

Схема подключения трехфазного двигателя в сеть через автоматический выключатель

Поэтому более подробно общий случай будет выглядеть так:

3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА

На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.

Напомню, чтобы ориентировочно выбрать (оценить) необходимый тепловой ток уставки тепловой защиты, надо номинальную мощность трехфазного двигателя (указана на шильдике) умножить на 2.

Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.

Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).

Она прекрасно работает, так же, как по многу лет может работать скрутка меди с алюминием. И в один “прекрасный” день сгорит скрутка. Или сгорит двигатель.

Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.

Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.

Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –

  1. Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
  2. Невозможность дистанционного и автоматического включения/выключения двигателя.

Эти недостатки можно устранить, в схемах ниже будет показано как.

Подключение трехфазного двигателя через ручной пускатель

4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА

Поскольку у двигателей обычно большой пусковой ток, то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.

Ручной пускатель двигателя с дополнительным контрольным контактом.

Вот что у него на боковой стенке:

Автомат защиты двигателя – характеристики на боковой стенке

Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.

В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.

Плюс схемы – можно регулировать уставку теплового тока. Минус тот же, что и в предыдущей схеме – нет дистанционного включения.

Схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских простеньких станках используется и по сей день.

Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “ Пуск ” и “ Стоп ” , которые могут быть вынесены на пульт управления через 3 провода любой длины.

Пример такой схемы – в статье про восстановление схемы гидравлического пресса, см. последнюю в статье схему, пускатель КМ0. Про выбор, устройство и характеристики электромагнитных пускателей (контакторов) – прочитайте здесь.

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Читайте так же:
Как снять номерную пломбу с электросчетчика

Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).

Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью Схемы подключения магнитного пускателя. Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.

Подключение трехфазного двигателя через электронные устройства

Все способы пуска двигателя, описанные выше, называются Пуск прямой подачей напряжения. Часто, в мощных приводах, такой пуск является тяжелым испытанием для оборудования – горят ремни, ломаются подшипники и крепления, и т.д.

Поэтому, статья была бы неполной, если бы я не упомянул современные тенденции. Теперь всё чаще для подключения трехфазного двигателя вместо электромагнитных пускателей применяют электронные силовые устройства. Под этим я подразумеваю:

  1. Твердотельные реле (solid state relay) – в них силовыми элементами являются тиристоры (симисторы), которые управляются входным сигналом с кнопки либо с контроллера. Бывают как однофазные, так и трехфазные. Вот моя статья.
  2. Мягкие (плавные) пускатели (soft starter, устройства плавного пуска) – усовершенствованные твердотелки. Можно устанавливать ток защиты, время разгона/замедления, включать реверс, и др. И на эту тему есть статья. Практическое применение устройств плавного пуска – здесь.
  3. Частотные преобразователи – самое совершенное устройство, что придумало человечество для подключения электродвигателя. Описывать частотники – дело не одной статьи.

Преимущества таких устройств очевидны (прежде всего – отсутствие контактов как таковых), недостаток пока один – цена. А вот как может выглядеть схема их включения:

10. Подключение трехфазного двигателя – общая схема с электронной силой

Двухскоростные электродвигатели

Старый специфический способ подключения двухскоростных двигателей описан в статье Подключение двухскоростных асинхронных двигателей.

На этом заканчиваю, спасибо за внимание, всего охватить не удалось, пишите вопросы в комментариях!

Скачать

Если тема интересует более глубоко, рекомендую ознакомиться с литературой, приведенной на странице Скачать.

Вот одна из книг, приведенных там:
• Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. / Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. Одна из лучших книг, посвящённых основам электротехники. Изложение начинается с самых основ: объясняется, что такое напряжение, сила тока и сопротивление, приводятся указания по расчёту простейших электрических цепей, рассказывается о взаимосвязи и взаимозависимости электрических и магнитных явлений. Объясняется, что такое переменный ток, как устроен генератор переменного тока. Описывается, что такое конденсатор и что собой представляет катушка индуктивности, какова их роль в цепях переменного тока. Объясняется, что такое трёхфазный ток, как устроены генераторы трёхфазного тока и как организуется его передача. Отдельная глава посвящена полупроводниковым приборам: в ней речь идёт о полупроводниковых диодах, о транзисторах и о тиристорах; об использовании полупроводниковых приборов для выпрямления переменного тока и в качестве полупроводниковых ключей. Коротко описываются достижения микроэлектроники. Последняя треть книги целиком посвящена электрическим машинам, агрегатам и оборудованию: в 10 главе речь идёт о машинах постоянного тока (генераторах и двигателях); 11 глава посвящена трансформаторам; о машинах переменного тока (однофазных и трёхфазных, синхронных и асинхронных) подробно рассказывается в 12 главе; выключатели, электромагниты и реле описываются в главе 13; в главе 14 речь идёт о составлении электрических схем. Последняя, 15 глава, посвящена измерениям в электротехнике. Эта книга — отличный способ изучить основы электротехники, понять основополагающие принципы работы электрических машин и агрегатов., zip, 13.87 MB, скачан: 2256 раз./

• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 1693 раз./

Транс-ры тока СЗТТ

Мы поставляем трансформатры тока измерительные производства СЗТТ ( Свердловский Завод Трансформаторов Тока )
на различные номиналы и классы точности, при необходимости укомплектовываем шинами.

Межповерочный интервал ТШП производства СЗТТ -16 лет.

Часто задается вопрос зачем нужен трансформатор тока если есть счетчики, измеряющие ток нагрузки до 100А.
Как ни странно ответ на этот вопрос достаточно прост — трансформатор тока необходим когда ток в цепи нагрузки превышает
эту цифру. В таких случаях используется стандарное решение — устанавливается счетчик электроэнергии трансформаторного
включения, и он измеряет ток уменьшенный трансформатором тока. Номинальным током зачастую для трансформаторных счетчиков
является ток 5А ( 5 Ампер). При этом конструктивно трансформатор тока представляет собой катушку провода на корпусе,внутри
которго проходит токовая шина или силовой кабель. Сам трансформатор тока будет иметь характеристику номинального тока,
проходящего по силовому проводу или шине например ТШП 50 пропускает через себя ток 50А( ампер) и при этом выдает
ток 5А (в случае ТШП 5 ) — полная характеристика при этом будет ТШП 50/5.

Читайте так же:
Комплект по для электросчетчика меркурия

Что такое «трансформатор тока 5 5» — имеется ввиду трансформатор тока с классом точности 0,5,
с понижением номинального тока до 5А.

Класс точности — зачем он ? — все просто если у вас будет счетчик считать электроэнергию с классом
точности 0,5S (коммерческий учет), то
и трансофматор тока тоже должен быть класса точности не хуже 0,5S.
В ассортименте СЗТТ разработаны и мы поставляем также трансформаторы тока класса точности 0,2 и 0,2S.

Оключение и подключение трансформаторов тока на работающей электроустановке. Иногда всилу незнания и экономии
электрики готовы отключитьподключить трансформатор тока на работающей электроустановке к счетчику —
«токи ведь там небольшие» — говорят они, действительно ток трансформатора тока не превышет 5А, но !
напряжение на разомкнутых контактах согласно закону ома рассчитывается исходя из ЭДС, а это
совсем другая стихия и она легко сжигает высоким напряжением если цепь с трансформатором тока
не замкнута специальной испытательной клеммной коробкой ( ИКК )

Свердловский завод трансформаторов тока — лидер российского рынка по производству трансформаторов тока,
продукция обладает всеми необходимыми сертификатами качества и имеет гарантию от 8 лет.

Пример расшифровки номенклатуры:
Трансформатор ТШП-0,66-400-5-0,5
S Свердловского завода трансформаторов (СЗТТ)

Трансформатор тока ТШП (трансформатор шинный проходной) используется для передачи измерительной информации (ток)
измерительным приборам , проще говоря счетчикам электроэнергии и не только , в цепям переменного тока частотой 50 и 60Гц
и напряжением до 660В.
Данная модель может быть сделана с классом точности 0,2 ; 0,2 S и 0,5; 0,5 S – самая востребованная модель благодаря
соотношению цены к погрешности измерения ( меньше величина сопротивления магнитопровода по сравнению с 0,5),
что в разы снижает недоучет электроэнергии (кВт) , и без проблем проходит приёмку в электросетевых организациях.

Трансформатор на тока на 400А может применяться в электроустановках мощностью до 140 кВт ,
применяться в различными видами счетчиков трансформаторного включения с номинальным током от 5А.

Корпус трансформаторов тока ТОПТШП выполнен из негорючего пластиката и в каждой упаковке идет по три трансформатор,
каждый из них окрашен в определенный цвет:
фаза А — желтый
фаза В — зелёный
фаза С — красный

Расшифровка ТШП-0,66-400-5-0,5 S:
-трансформатор шинный проходной
— на напряжение до 660В
— сила тока первичной цепи до 400А
— сила тока вторичной цепи 5 А
— класс точности 0,5 S
Рабочая температура трансформатора -45 до +50 градусов
Расположение корпуса: любое ( горизонтально/вертикально)
Стандартный размер окна для шины 31х7 , 51х9 , 103,5х11 или провода диаметром 21 и 28 мм.

В комплект поставки входит:
— Комплект прозрачных защитных крышек для пломбировки вторичных выводов
— Комплект прижимных болтов для надежной фиксации к шине или проводу.
— Паспорта на тр-ты тока.
Коэффициент безопасности трансформаторов тока производства СЗТТ от 2 до 12 раз превышаем максимальную нагрузку
Гарантия на прибор 8 лет.
Срок службы 30 лет.
Межповерочный интервал (МПИ) 16лет.

Совместно с ТШП мы можем укомплектовать Вас:
-комплектом медных шин покрытых оловом
-счетчики электроэнергии трансформаторного включение от 5А
самых востребованных торговых марок Меркурий , НзиФ, Миртек , Милур и т.д
-сборные щиты ВРУ в сборе с трансформаторами и счетчиками ( по вашим схемам)
-трансформаторами тока с увеличенными размерами шин до 103,5 м

Трансформаторы тока СЗТТ закрывает всю линейку по различным номиналам мощностей, классам точности
и размерам окна шины, имеют сертификат ПАО РОССЕТИ, имеют межповерочный интервал 16 лет.

ТШП СЗТТ от 100 до 400, класс точности 0,5S постоянно поддерживаемая позиция на складе,
получить их можно в день оплаты.

Трансформаторы тока ТШП и ТОП Свердловского завода трансформаторов тока имеют межповерочный интервал 16 лет,
на это время после установки про него можно забыть, он просто работает — «эээээ».

Если вы хотите установить надежное оборудование, к которому у энергоснабжающей организации нет вопросов —
поставьте трансформаторы тока СЗТТ — трансформаторы тока ТШП производства СЗТТ лучшее решение.
______________________________________________________________________________________________

Тем, кому необходимо сэкономить на трансформаторе тока: УК, ТСЖ, ТСН, Промпредприятия, всем кроме сборщиков
«бюджетных КТП» и т.д(короче бракоделов) выгодно покупать и эксплуатировать ТШП 400 СЗТТ — считайте сами:

ТШП СЗТТТШП КитайТШП Кострома
цена
14801090730
межповерочный интервал
16 лет12 лет5 лет
затраты на эсплуатация за 16 лет
нет19904800
затраты на эсплуатация за 30 лет
150037509000

где экономия ?

Трансформатор тока ТШП-0,66-400-5-0,5 S имеет следующие плюсы:

  1. МПИ (меж поверочный интервал) 16 лет
  2. Тр-ры размечены по цветам — не перепутаешь

Экономичность , компактные габариты , простота установки на шины или провод

возможность заказа в любом корпусе на шину от 31мм до 103,5мм и любым классом точности от 0,2 до 0,5 S

Минимальные сроки поставки при отсутствии на складе 3 -7 дней

Сертификаты и протоколы испытаний , важно для участия в тендерах.

Комплектация шинами (медь покрыта оловом)

но есть и минусы :

1) Продажа осуществляется только комплектом из 3 шт , так как есть по фазная разметка в комплекте.
И если Вам нужен 1 трансформатор например в УКРМ , то мы предлаем только комплектом.

2) Цена выше конкурентов, т.к. выше качество и МПИ

Когда необходимо установить трансформаторы тока СЗТТ:

1) При увеличении мощности электроустановки.

2) При новом строительстве ЭУ

3) При необходимости замены других тр-ров.

Что Вы получаете установив трансформатор Свердловского завода трансформаторов тока?
Какие есть альтернативы или аналоги трансформаторам СЗТТ ?

Альтернативой ТШП СЗТТ — могут быть любые тр-ры тока других производителей.

Потребности, которые действительно решает:

Поставил и забыл на 16 лет , высвобождение времени и ресурсов.

Нет вопросов по тр-рам со стороны ЕЭСК по приемке объектов

Экономия на эксплуатации.

Поддержка местного производителя.

Не надо ждать , всё в наличии.

Типичная схема подключения счетчика через 3 трансформатора тока,
на примере счетчиков Меркурий.

Схема трансформаторного подключения счетчиков на примере
счетчиков ПСЧ-4ТМ.05.МК выглядит похоже.

Как правильно подключить УЗО: схемы, варианты подключения, правила безопасности

Создание современной внутриквартирной электросети – ответственное мероприятие, связанное с расчетами, выбором проводов и электроустановок, монтажными работами. При этом одной из главных задач остается обеспечение безопасности жильцов и сохранности имущества. Вы согласны?

Если правильно подобраны защитные приборы и продумана схема подключения УЗО и автоматов, все риски снижаются до минимума. Но как это сделать? Что учесть при выборе? На эти и многие другие вопросы мы ответим в нашем материале.

Также вы сможете разобраться в принципе действия УЗО и вариантах его подключения. Советы экспертов и нюансы монтажа собраны в этом материале. Кроме того, в статье размещены видеоролики, из которых вы узнаете о главных ошибках при подключении и увидите, как подключается УЗО на практике.

Назначение и принцип действия УЗО

В отличие от автомата, который предохраняет сеть от перегрузок и коротких замыканий, УЗО предназначено для мгновенного распознавания наличия тока утечки и реагирования путем отключения сети или отдельной электрической линии.

Поскольку эти два защитных прибора отличаются функционально, то оба должны присутствовать в схеме сборки.

Принцип работы УЗО прост: сравнение величин входящей и выходящей силы тока и срабатывание при обнаружении несоответствия.

Внутри корпуса автоматического устройства находится трансформатор с сердечником и обмотки с равномерными магнитными потоками, направленными в разные стороны.

При возникновении тока утечки выходной магнитный поток уменьшается, в результате чего срабатывает электрореле и размыкает питание. Это возможно, если человек прикоснется к заземленному прибору и электроцепи. В среднем, на это уходит от 0,2 до 0,4 секунды. Подробнее об устройстве и принципе действия УЗО мы говорили здесь.

Существуют различные типы приборов, предназначенные для сетей с постоянным или переменным током. Одна из важных технических характеристик, которая обязательно присутствует в маркировке – сила тока утечки.

Для защиты жильцов дома выбирают устройства номиналом 30 мА. Там, где есть повышенный риск, например, санузлы с повышенной влажностью, игровые детские комнаты, устанавливают УЗО на 10 мА.

Более высокий номинал, например, 100 мА или 300 мА, предназначен для предотвращения пожара, так как крупные утечки тока способны вызвать возгорание. Такие устройства монтируют в качестве общего вводного УЗО, а также на предприятиях и крупных объектах.

Детальная информация по выбору подходящего УЗО изложена в этой статье.

АВДТ компактнее связки защитных приборов и занимает меньше места в электрошкафу, но при его срабатывании труднее найти причину отключения.

Схема установки выбирается в соответствии с поставленной задачей и видом сети – 1-фазной или 3-фазной. Если необходимо защитить дом или квартиру целиком от токовых утечек, УЗО устанавливают на входе силовой линии.

Варианты защиты для однофазной сети

О необходимости монтажа комплекта защитных приборов упоминают производители мощной бытовой техники. Нередко в сопроводительной документации к стиралке, электроплите, посудомойке или бойлеру указано, какие устройства необходимо дополнительно установить в сеть.

Учитывая количество различных контуров, обслуживающие розетки, выключатели, технику, максимально нагружающую сеть, можно сказать, что схем подключения УЗО бесконечное множество. В бытовых условиях можно даже установить розетку со встроенным УЗО.

Далее рассмотрим популярные варианты подключения, которые являются основными.

Вариант #1 – общее УЗО для 1-фазной сети.

Место УЗО – на входе силовой линии в квартиру (дом). Его устанавливают между общим 2-полюсным автоматом и комплектом автоматов для обслуживания различных электролиний — осветительных и розеточных контуров, отдельных ответвлений для бытовой техники и др.

Предположим, что произошла утечка тока из-за соприкосновения фазного провода с включенным в сеть металлическим прибором. УЗО срабатывает, напряжение в системе пропадает, и найти причину отключения будет довольно сложно.

Положительная сторона касается экономии: один прибор стоит дешевле, да и места в электрощите занимает меньше.

Вариант #2 – общее УЗО для 1-фазной сети + счетчик.

Отличительной чертой схемы является наличие прибора учета электроэнергии, установка которого обязательна.

Защита от утечки тока так же подключается к автоматам, но на входящей линии к ней присоединен счетчик.

Преимущества такого расположения те же, что и у предыдущего решения – экономия пространства на электрощите и денег. Недостаток – сложность обнаружения места утечки тока.

Вариант #3 – общее УЗО для 1-фазной сети + групповые УЗО.

Схема является одной из усложненных разновидностей предыдущего варианта.

Благодаря установке дополнительных приборов на каждый рабочий контур защита от токов утечки становится двойной. С точки зрения безопасности — это отличный вариант.

Чтобы сразу не срабатывали оба аппарата (частный и общий), необходимо соблюдать селективность, то есть при установке учитывать и время срабатывания, и токовые характеристики приборов.

Положительная сторона схемы – в аварийной ситуации отключится один контур. Крайне редко происходят случаи, когда отключается вся сеть.

Это может произойти, если установленное на конкретной линии УЗО:

  • бракованное;
  • вышло из строя;
  • не соответствует нагрузке.

Чтобы подобных ситуаций не возникало, рекомендуем ознакомиться с методами проверки УЗО на работоспособность.

Минусы – загруженность электрощитка множеством однотипных приборов и дополнительные траты.

Вариант #4 – 1-фазная сеть + групповые УЗО.

Практика показала, что схема без монтажа общего УЗО тоже неплохо функционирует.

Конечно, страховки от несрабатывания одной защиты нет, но это легко исправить, купив более дорогостоящее устройство от производителя, которому можно доверять.

С точки зрения экономии, электромонтаж нескольких устройств проигрывает – один общий обошелся бы намного дешевле.

Если в вашей квартире электросеть не заземлена, рекомендуем ознакомиться со схемами подключения УЗО без заземления.

Схемы для 3-фазной сети

В домах, производственных помещениях и прочих сооружениях может встречаться иной вариант обустройства электроснабжения.

Так, для квартир подключение 3-фазной сети нехарактерно, зато для оснащения частного дома такой вариант не редкость. Здесь будут использоваться иные схемы подключения аппарата защиты.

Вариант #1 – общее УЗО для 3-фазной сети + групповые УЗО.

Для сети 380 В 2-полюсного прибора мало, необходим 4-полюсный аналог: нужно подключить 1 нулевую жилу и 3 фазных.

Важен вид проводов. Для 1-фазной сети подходит стандартный кабель ВВГ, тогда как для 3-фазной рекомендуется протягивать более стойкий к возгоранию ВВГнг. О выборе подходящего типа провода мы писали в другой нашей статье.

Вариант #2 – общее УЗО для 3-фазной сети + счетчик.

Это решение полностью повторяет предыдущее, но в схему добавлен счетчик электроэнергии. Групповые УЗО также включены в систему обслуживания отдельных линий.

Существует нюанс, который относится к любой из представленных схем. Если в квартире или доме несколько осветительных и розеточных контуров, несколько мощных бытовых приборов, требующих обустройства отдельных электролиний, то есть смысл устанавливать двойную защиту с общим УЗО.

В обратном случае достаточно либо общего аппарата, или по одному на каждый контур.

Инструкция по установке УЗО

Сначала нужно выбрать место для монтажа устройства. Применяются 2 варианта: щит или шкаф. Первый напоминает металлическую коробку без крышки, закрепленную на высоте, удобной для обслуживания.

Шкаф оснащен дверцей, которую можно закрывать на замок. Некоторые виды шкафов имеют отверстия, чтобы можно было снимать показания прибора учета, не распахивая специально дверцу, и отключать устройства.

К левым клеммам на входе и на выходе всегда подключают нулевой провод, к правым – фазный. Один из вариантов:

  • входная клемма N (верхняя левая) – от вводного автомата;
  • выход N (нижняя левая) – на отдельную нулевую шину;
  • входная клемма L (верхняя правая) – от вводного автомата;
  • выход L (нижняя правая) – к групповым автоматам.

К моменту установки защитного устройства на щите уже могут быть установлены автоматические выключатели. Чтобы упорядочить расположение приборов и проводов, возможно, придется переставить устройства в определенном порядке.

Представляем пример установки вводного УЗО в электрошкаф, где уже стоит счетчик, вводный автомат и несколько автоматических выключателей для отдельных контуров — осветительного, розеточного и др.

Никогда не подключают УЗО на входе – оно всегда следует за общим вводным автоматическим выключателем. Если используют счетчик, то устройство защитного отключения переходит на третью позицию от входа.

Описание процесса подключения:

  • устанавливаем прибор на DIN-рейку справа от автомата – достаточно приложить его и надавить с небольшим усилием до щелчка;
  • протягиваем разделанные и зачищенные провода от автомата и нулевой шины, вставляем в верхние клеммы согласно схеме, закручиваем крепежные винты;
  • таким же образом вставляем провода в нижние клеммы и закручиваем винты;
  • тестируем – сначала включаем общий автомат, затем УЗО, нажимаем кнопку «Тест»; при нажатии прибор должен отключиться.

Чтобы убедиться в правильности подключения, иногда инсценируют ток утечки. Берут два рабочих провода – «фазу» и «землю», одновременно подводят к цоколю электролампы. Появляется утечка, и прибор должен моментально сработать.

Каких ошибок следует избегать?

Перед подключением обязательно следует перепроверить технические характеристики устройств. Номинальный ток должен быть равным или выше, чем аналогичный параметр у входного автомата. Определить значения легко по маркировке.

Электрики рекомендуют выбирать защитное устройство на ступень выше, то есть для автомата на 50А подходит УЗО 63А.

Можно правильно рассчитать параметры, выбрать автомат и УЗО с верным номиналом, но при монтаже допустить небольшую ошибку, вследствие чего система будет бесполезной.

Например, новички часто путают шины. Следует запомнить, что для нулевого проводника и заземляющего провода использую разные шины. Кроме этого, для каждого устройства необходима отдельная шина: на 5 УЗО – 5 шин.

Ни в коем случае нельзя путать полюса N и L. Они имеют на корпусе буквенные обозначения, а провода отличаются цветом, поэтому нужно быть внимательным.

Если происходит ложное срабатывание или, напротив, прибор не реагирует, возможно, причина в следующем:

  • «фаза» и «земля» соединены после УЗО;
  • неполное подключение – не вставлен проводник N в соответствующую клемму;
  • «нуль» и «земля» соединены в розетке;
  • путаница между подключением двух и более УЗО к электроустановкам.

На практике ошибок гораздо больше, так как применяются разные схемы. Чем больше приборов участвует в сборке электрощита, тем внимательнее нужно быть при подключении.

Правила безопасности в процессе работы

Большая часть правил носит общий характер, то есть их необходимо применять в процессе любых электромонтажных работ.

Если вы решили самостоятельно оборудовать распределительный электрощит, перед тем как установить и подключить УЗО, не забудьте:

  • отключить электропитание – выключить автомат на входе;
  • использовать провода с соответствующей цветовой маркировкой;
  • не применять металлические трубы или арматуру в квартире для заземления;
  • в первую очередь устанавливать автоматический входной выключатель.

Если существует возможность, рекомендуется использовать отдельные приборы для линий освещения, розеток, контуров для стиральной машины и др. В обратном случае достаточно установки общего УЗО.

Кроме характеристик самих приборов, важны и параметры других элементов электропроводки, например, сечение электропровода. Его следует рассчитать, учитывая постоянную нагрузку.

Соединять провода между собой лучше с помощью клеммников, а для подключения к приборам – использовать специально предназначенные, промаркированные клеммы, а также схему на корпусе.

Выводы и полезное видео по теме

Несколько практических советов и объяснений помогут новичкам разобраться, как правильно выбрать и подключить УЗО в доме или квартире.

Ошибки при подключении розеток:

О необходимости и нюансах установки защитных приборов:

Не всегда существует возможность вызова квалифицированного специалиста для оборудования распределительного электрощита. Иногда автоматы или УЗО приходится устанавливать самостоятельно.

Из-за оплошности при монтаже может произойти удар током, поэтому важно использовать схемы подключения, правильно делать расчеты и следовать правилам техники безопасности.

Профессионально занимаетесь электромонтажными работами и хотите добавить полезные советы или другие схемы подключения УЗО? Может хотите дополнить нашу статью рекомендациями по электробезопасности? Пишите свои комментарии в блоке ниже – ваши замечания будут полезными многим домашним мастерам.

Схема счетчика с трансформатором тока через автоматы

ТТ подключать к N.

ПЕ предназначена ТОЛЬКО для безопасности.

TN-S откуда тянется? счетчик где стоит? не Меркурий?

ТТ подключать к N.

ПЕ предназначена ТОЛЬКО для безопасности.

Вот, что нашел в интернете:
«ПТЭЭП. 2.6.24. Вторичные обмотки трансформаторов тока должны быть всегда замкнуты на реле и приборы или закорочены. Вторичные цепи трансформаторов тока и напряжения и вторичные обмотки фильтров присоединения высокочастотных каналов должны быть заземлены.

ПОТР М 4.9.2. До окончания монтажа вторичных цепей, электроизмерительных приборов, устройств релейной защиты и электроавтоматики вторичные обмотки трансформаторов тока должны быть замкнуты накоротко.

ПУЭ 1.5.37. Заземление (зануление) счетчиков и трансформаторов тока должно выполняться в соответствии с требованиями гл. 1.7. При этом заземляющие и нулевые защитные проводники от счетчиков и трансформаторов тока напряжением до 1 кВ до ближайшей сборки зажимов должны быть медными.

3.4.23. Заземление во вторичных цепях трансформаторов тока следует предусматривать в одной точке на ближайшей от трансформаторов тока сборке зажимов или на зажимах трансформаторов тока.
Отсюда следует, что для N места подключения не остается. «

И еще:
«В TN-S, если присоединить к N, утечки с фазы УЗО не ловит, скорее соглашусь с подключением вторички и вместе с ней и ОПЧ ТТ (корпуса) к РЕ.
Этим мы обезопасимся при производстве работ во вторичных цепях без отключения первичных и недопустим объединения РЕ с N после разделения. «

Счетчик вот такой (примерно), только трансформаторный

так-то оно, так, и по схеме нарисовано к ПЕ.

сомнения в следующем:

где произошло разделение четырехпроводки на пятипроводку? как правило на вводном электрическом шкафу.

дальше пошла пятипроводка и объединять Н и ПЕ уже нельзя по ПУЭ.

если кабель защищен групповым УЗО, то подсоединив его в цепь фаза -ПЕ скорей всего УЗО будет ложно выбивать.

так-то оно, так, и по схеме нарисовано к ПЕ.

сомнения в следующем:

где произошло разделение четырехпроводки на пятипроводку? как правило на вводном электрическом шкафу.

дальше пошла пятипроводка и объединять Н и ПЕ уже нельзя по ПУЭ.

если кабель защищен групповым УЗО, то подсоединив его в цепь фаза -ПЕ скорей всего УЗО будет ложно выбивать.

Все правильно. Разделение произведено до нас. В наш шкаф приходит пятипроводка.
То есть если защиты по утечке нет,то можно цеплять или к N или к PE. Так что ли? А если УЗО стоит, то только к N ?
Что тогда означает это:
«ПТЭЭП. 2.6.24. Вторичные обмотки трансформаторов тока должны быть всегда замкнуты на реле и приборы или закорочены. Вторичные цепи трансформаторов тока и напряжения и вторичные обмотки фильтров присоединения высокочастотных каналов должны быть заземлены.»

Да, примерно так.
Вот смотрю я на схему в первом посте, и наблюдаю, что обмотки ТТ закорачиваются имено на ПЕ, хотя и НОЛЬ на схеме есть, если -б было пофиг наверное не стали они заморачиваться, закоротили-б на ноль.

спроси в энергосбыте, они счетчики часто ставят, они точно знают.

Да, примерно так.
Вот смотрю я на схему в первом посте, и наблюдаю, что обмотки ТТ закорачиваются имено на ПЕ, хотя и НОЛЬ на схеме есть, если -б было пофиг наверное не стали они заморачиваться, закоротили-б на ноль.

спроси в энергосбыте, они счетчики часто ставят, они точно знают.

3.4.23. Заземление во вторичных цепях трансформаторов тока следует предусматривать в одной точке на ближайшей от трансформаторов тока сборке зажимов или на зажимах трансформаторов тока.

Я то же считаю, что подключать надо к РЕ и только с целью электробезопасности, а Сбыту пофиг, счётчик всё равно будет считать, хоть вообще ни к чему не подключай.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector