Sibprompost.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Закон джоуля ленца определение

Закон джоуля ленца определение. «Закон Джоуля-Ленца и его применение

2. Чему равно количество теплоты, получаемое кристаллической решеткой проводника от направленно движущихся заряженных частиц?

3. Сформулируйте закон Джоуля-Ленца. Запишите его математическое выражение.

времени прохождения тока по проводнику.

4. Дайте определение мощности электрического тока. Приведите формулу для расчета этой мощности.

5. Как зависит мощность, выделяемая в проводниках с током, от типа их соединения?

Закон Джоуля – Ленца – закон физики, определяющий количественную меру теплового действия электрического тока. Сформулирован этот закон был в 1841 году английским учёным Д. Джоулем и совершенно отдельно от него в 1842 году известным русским физиком Э. Ленцем. Поэтому он получил своё двойное название — закон Джоуля – Ленца.

Определение закона и формула

Словесная формулировка имеет следующий вид: мощность тепла, выделяемого в проводнике при протекании сквозь него , пропорционально произведению значения плотности электрического поля на значение напряженности.

Математически закон Джоуля — Ленца выражается следующим образом:

где ω — количество тепла, выделяемого в ед. объема;

E и j – напряжённость и плотность, соответственно, электрического полей;

σ — проводимость среды.

Физический смысл закона Джоуля – Ленца

Закон можно объяснить следующим образом: ток, протекая по проводнику, представляет собой перемещение электрического заряда под воздействием . Таким образом, электрическое поле совершает некоторую работу. Эта работа расходуется на нагрев проводника.

Другими словами, энергия переходит в другое свое качество – тепло.

Но чрезмерный нагрев проводников с током и электрооборудования допускать нельзя, поскольку это может привести к их повреждению. Опасен сильный перегрев при проводов, когда по проводниках могут протекать достаточно большие токи.

В интегральной форме для тонких проводников закон Джоуля – Ленца звучит следующим образом: количество теплоты, которое выделяется в единицу времени в рассматриваемом участке цепи, определяется как произведение квадрата силы тока на сопротивление участка.

Математически эта формулировка выражается следующим образом:

при этом Q – количество выделившейся теплоты;

I – величина тока;

R — активное сопротивление проводников;

t – время воздействия.

Значение параметра k принято называть тепловым эквивалентом работы. Величина этого параметра определяется в зависимости от разрядности единиц, в которых выполняются измерения значений, используемых в формуле.

Закон Джоуля-Ленца имеет достаточно общий характер, поскольку не имеет зависимости от природы сил, генерирующих ток.

Из практики можно утверждать, что он справедлив, как для электролитов, так проводников и полупроводников.

Область применения

Областей применения в быту закона Джоуля Ленца – огромное количество. К примеру, вольфрамовая нить в лампе накаливания, дуга в электросварке, нагревательная нить в электрообогревателе и мн. др. Это наиболее широко распространенный физический закон в повседневной жизни.

Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника , в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt .

Учитывая, что U = IR , в результате получаем формулу:

Q = I 2 Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

Закон Джоуля–Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

Где применяется закон Джоуля-Ленца?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии . Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей . Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.

Электричество — неотъемлемый признак нашей эпохи. Абсолютно всё вокруг завязано на нём. Любой современный человек, даже без технического образования, знает, что электрический ток, текущий по проводам, способен в некоторых случаях нагревать их, зачастую до очень высоких температур. Казалось бы, это заведомо всем известно и не стоит упоминания. Однако, как объяснить это явление? Почему и как происходит нагрев проводника?

Читайте так же:
Тепловые источники тока картинки

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц «застрял» с расчётами, так как параметры его смоделированной цепи «источник энергии — проводник — потребитель энергии» сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим и температурой проводника.

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало — невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший «нагреватель» — стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся — тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

Формула Джоуля-Ленца

В итоге, спустя десятилетие, в 1843 году Эмилий Ленц выставил на всеобщее обозрение научного сообщества результат своих опытов в виде закона. Однако, оказалось, что его опередили! Пару лет назад английский физик Джеймс Прескотт Джоуль уже проводил аналогичные опыты и также представил общественности свои результаты. Но, тщательно проверив все работы Джеймса Джоуля, русский учёный выяснил что собственные опыты гораздо точнее, наработан больший объём исследований, потому, русской науке есть чем дополнить английское открытие.

Научное сообщество рассмотрело оба результата исследований и объединила их в одно, тем самым закон Джоуля переименовали в закон Джоуля-Ленца. Закон утверждает, что количество теплоты, выделяемое проводником при протекании по нему электрического тока, равно произведению силы этого тока в квадрате, сопротивлению проводника и времени, за которое по проводнику течёт ток. Или формулой:

Q — количество выделяемого тепла (Джоули)

I — сила тока, протекающего через проводник (Амперы)

R — сопротивление проводника (Омы)

t — время прохождения тока через проводник (Секунды)

Почему греется проводник

Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы «трётся», соударяется электронами о молекулы проводника. Ну а, как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.

Из формулы также следует — чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев. Например, если последовательно соединить проводник-медь (удельное сопротивление 0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом — будет неравномерный нагрев в месте скрутки. В итоге — подгорание с последующим пропаданием контакта.

Применение закона Джоуля-Ленца в жизни

Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины — первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.

Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна, данный эффект использовали в качестве источника света. Появились первые лампочки.

Читайте так же:
Тепловыделение проводника с током

Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную колбу, откачивали воздух для замедления процесса окисления и получали незатухаемый, чистый и стабильный источник света – электрическую лампочку

Заключение

Таки образом, можно сказать что на законе Джоуля-Ленца держится чуть ли не вся электрика и электротехника. Открыв этот закон, появилась возможность уже заранее предсказать некоторые будущие проблемы в освоении электричества. Например, из-за нагрева проводника передача электрического тока на большое расстояние сопровождается потерями этого тока на тепло. Соответственно, чтобы компенсировать эти потери нужно занизить передаваемый ток, компенсируя это высоким напряжением. А уже на оконечном потребителе, понижать напряжение и получать более высокий ток.

Закон Джоуля-Ленца неотступно следует из одной эпохи технологического развития в другую. Даже сегодня мы постоянно наблюдаем его в быту – закон проявляется всюду, и не всегда люди ему рады. Сильно греющийся процессор персонального компьютера, пропадание света из-за обгоревшей скрутки «медь-алюминий»,выбитая вставка-предохранитель, выгоревшая из-за высокой нагрузки электропроводка – всё это тот самый закон Джоуля-Ленца.

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка

Закон Джоуля Ленца в интегральной форме в тонких проводах:

Если сила тока изменяется со временем, проводник неподвижен и химических превращений в нем нет, то в проводнике выделяется тепло.

— Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах. Тот же эффект в электрических машинах и аппаратах приводит к непроизвольным затратам энергии (потере энергии и снижении КПД). Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку; при перегрузке повышение температуры может вызвать повреждение изоляции или сокращение срока службы установки.

Закон Джоуля-Ленца

Особенно тщательные исследования бы­ли выполнены для установления количества теплоты, которое выделяется в проводниках при прохождении тока. Английский физик Джеймс Прескотт Джоуль (1818—1889) в 1841 г. и независимо от него русский физик Эмилий Христианович Ленц (1804—1865) в 1842 г. установили, что

количество теплоты, выделяющееся в проводнике при прохож­дении в нем тока, пропорционально квадрату силы тока, сопротивлению проводника и вре­мени прохождения тока:

Этот вывод в науке получил название закона Джоуля-Ленца, а полученная форму­ла является его математическим выражением.

В наиболее общем виде закон Джоуля-Ленца можно получить, если установить, какая энергия выделяется в единице объема проводника за единицу времени (плотность тепловой мощности):

Джоуль Джеймс Прескотт
Ленц Эмилий Христианович

Джоуль Джеймс Прескотт (1818 — 1889) — английский физик, член Лондонского королевского общества с 1859 г. По­лучил домашнее образование; первые уроки по физике с ним провел Джон Дальтон. Написал выдающиеся работы по теплоте и электромагнетизму, один из первооткрывателей закона сохране­ния энергии, в 1841 г. (независимо от Э. X. Ленца) открыл закон, который называется законом Джоуля—Ленца.

Ленц Эмилий Христианович (1804 — 1865) — русский физик, член Петербург­ской АН с 1830 г. Учился в Дерптском университете, а в 1836 г. возглавил ка­федру физики и физической географии Петербургского университета, с 1840 г. — декан физико-математического факульте­та, а с 1863 г. — ректор. Преподавал также в морском корпусе, Михайловской артил­лерийской академии, педагогическом ин­ституте. В 1833 г. установил правило для определения направления индукционного тока (закон Ленца), а в 1842 г. (независимо от Джоуля) — закон теплового действия электрического тока.

Необходимо величины, характеризующие проводник и электрическое поле в нем в целом (сопротивление проводника R, силу тока в нем I), выразить через величины, характеризующие вещество проводника в каж­дой его точке (удельное сопротивление или удельная электропроводимость — ρ или σ) и электрическое поле в каждой точке про­водника (напряженность поля E).

Рис. 5.15. Проводник с током

Рассмотрим проводник (рис. 5.15) дли­ной l, площадью поперечного сечения S, удельное сопротивление которого ρ (удель­ная электропроводимость σ), в котором су­ществует ток силой I.

Сопротивление такого проводника R = ρ • l / S, объем — V = S • l, сила тока I = j • S, где j — плотность тока, определяющаяся через на­пряженность электрического поля E: Материал с сайта http://worldofschool.ru

Подставляем необходимые данные в фор­мулу для определения плотности тепловой мощности w.

В этом случае закон Джоуля-Ленца фор­мулируется так:

плотность тепловой мощнос­ти в проводнике с током равна произведению удельной электропроводимости вещества про­водника на квадрат напряженности электри­ческого поля проводника в данной точке.

Закон ленца кратко. Тепловой закон джоуля-ленца

Физический закон, оценивающий тепловое действие электрического тока. Закон Джоуля-Ленца открыт в 1841 году Джеймсом Джоулем и в 1842 году, совершенно независимо Эмилием Ленцем.

Читайте так же:
Двигатели постоянного тока тепловоз

как мы уже знаем, при движении свободных электронов по проводнику, должен преодолеть сопротивление материала. Во время этого движения зарядов происходят постоянные столкновения атомов и молекул вещества. При этом энергия движения и сопротивления превращается в тепловую. Ее зависимость от тока была впервые описана двумя независимыми учеными Джеймсом Джоулем и Эмилем Ленцем. Поэтому закон и получил двойное название.

Определение , количество теплоты, выделившееся за единицу времени на конкретном участке электрической цепи прямо пропорционально произведению квадрата силы тока на данном участке и его сопротивлению.

Математически, формулу можно записать так:

где Q – количество вырабатываемой теплоты, а – коэффициент тепла (обычно он берется равным 1 и не учитывается), I – сила тока, R – сопротивление материала, t – время протекания тока по проводнику. Если коэффициент теплоты а = 1 , то Q измеряться в джоулях. Если же а = 0,24 , то Q измеряется в малых калориях.

Любой проводник всегда нагревается, если через него течет ток. Но перегрев проводников очень опасен, т.к может повредите не только электронную аппаратуру, но и стать причиной пожара. Так например, в случае короткого замыкания перегрев материала проводника огромен. Поэтому для защиты от коротких замыканий и больших перегревов в электронные схемы добавляются специальные радиокомпоненты — плавкие предохранители . Для их изготовления используется материала, который быстро плавятся и обесточивают питающую цепь при достижении током максимальных значений. Плавкие предохранители необходимо выбирать в зависимости от площади сечения проводника.

Закон Джоуля-Ленца актуален как для постоянного, так и для переменного тока. Согласно нему работает множество различных нагревательных устройств. Ведь, чем тоньше проводник, тем больший ток по нему проходит за более большой промежуток времени, тем больше количество тепла выделиться в результате этого.

Я надеюсь вы помните помнить, что сила тока зависит от напряжения. Появляется вопрос, почему ноутбук не нагревается так сильно как утюг? Потому, что в основании имеется спиральная проволока изготовленная из стали, которая отличается низкой сопротивляемостью. Плюс стальная подошва, поэтому утюг разогревается до высоких температур, и мы можем им гладить.

А имеет стабилизатор напряжения, который понижает 220 вольт до 19 вольт. Плюс сопротивление всех схем и компонентов достаточно высокое. Дополнительно для охлаждение имеется кулер и медные тепловые радиаторы.

Работа закона Джоуля-Ленца хорошо просматривается на практике. Самый известный пример его применения – обыкновенная лампа накаливания или , в которой свечение нити осуществляется благодаря прохождению по ней тока под высоким напряжением.

На основании закона Джоуля-Ленца работает и , где создание сварного соединения совершается путем нагрева металла, за счет проходящего через него тока и деформации свариваемых частей путем сжатия.

Электродуговая сварка, также работает на физических принципах закон Джоуля-Ленца. Для совершения сварочных работ электроды разогревают до такого состояния, чтобы между ними возникла сварочная дуга. Эффект вольтовой дуги открыл русский ученый В.В. Петров, используя принципы закрна Джоуля-Ленца.

Кроме математической формулы, этот закон имеет и дифференциальную форму. Предположим, что по неподвижному проводнику течет ток и вся его работа тратится только на нагревание. Тогда, согласно закону сохранения энергии, получаем следующее математическое выражение.

Энергия направленного движения заряженных частиц расходуется на нагрев кристаллической решетки проводника.

2. Чему равно количество теплоты, получаемое кристаллической решеткой проводника от направленно движущихся заряженных частиц?

3. Сформулируйте закон Джоуля-Ленца. Запишите его математическое выражение.

времени прохождения тока по проводнику.

4. Дайте определение мощности электрического тока. Приведите формулу для расчета этой мощности.

5. Как зависит мощность, выделяемая в проводниках с током, от типа их соединения?

Энциклопедичный YouTube

Урок 254. Закон Джоуля-Ленца. Работа и мощность электрического тока

Закон Джоуля-Ленца. Часть 1

Урок 255. Задачи на работу и мощность электрического тока

Субтитры

Определения

В словесной формулировке звучит следующим образом

Мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля

Математически может быть выражен в следующей форме:

где w — мощность выделения тепла в единице объёма, j → >> — плотность электрического тока , E → >> — напряжённость электрического поля , σ — проводимость среды, а точкой обозначено скалярное произведение.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах :

В интегральной форме этот закон имеет вид

где dQ — количество теплоты, выделяемое за промежуток времени dt , I — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t 1 до t 2 . В случае постоянных силы тока и сопротивления:

Читайте так же:
Время срабатывания теплового расцепителя автоматического выключателя

А применяя закон Ома можно получить следующие эквивалентные формулы:

Q = V 2 t / R = I V t t/R =IVt>

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока в проводах является нежелательным, поскольку ведёт к потерям энергии. Подводящие провода и нагрузка соединены последовательно , значит ток в сети I на проводах и нагрузке одинаков. Мощность нагрузки и сопротивление проводов не должны зависеть от выбора напряжения источника. Выделяемая на проводах и на нагрузке мощность определяется следующими формулами

Откуда следует, что Q w = R w ⋅ Q c 2 / V c 2 =R_cdot Q_^<2>/V_^<2>> . Так как в каждом конкретном случае мощность нагрузки и сопротивление проводов остаются неизменными и выражение R w ⋅ Q c 2 cdot Q_^<2>> является константой, то тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе. Повышая напряжение мы снижаем тепловые потери в проводах. Это, однако, снижает электробезопасность линий электропередачи .

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при выборе проводов, предназначенных для сборки электрических цепей, достаточно следовать принятым нормативным документам, которые регламентируют выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы . В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром , константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Свойства электрического тока

Когда электрический ток проходит через металлический проводник, его электроны постоянно сталкиваются с различными посторонними частицами. Это могут быть обычные нейтральные молекулы или молекулы, потерявшие электроны. Электрон в процессе движения может отщепить от нейтральной молекулы еще один электрон. В результате, его кинетическая энергия теряется, а вместо молекулы происходит образование положительного иона. В других случаях электрон, наоборот, соединиться с положительным ионом и образовать нейтральную молекулу.

В процессе столкновений электронов и молекул происходит расход энергии, в дальнейшем превращающейся в тепло. Затраты определенного количества энергии связаны со всеми движениями, во время которых приходится преодолевать сопротивление. В это время происходит превращение работы, затраченной на преодоление сопротивления трения, в тепловую энергию.

Закон джоуля Ленца формула и определение

Согласно закону джоуля Ленца, электрический ток, проходящий по проводнику, сопровождается количеством теплоты, прямо пропорциональным квадрату тока и сопротивлению, а также времени течения этого тока по проводнику.

В виде формулы закон Джоуля-Ленца выражается следующим образом: Q = I 2 Rt, в которой Q отображает количество выделенной теплоты, I — , R — сопротивление проводника, t — период времени. Величина «к» представляет собой тепловой эквивалент работы и применяется в тех случаях, когда количество теплоты измеряется в калориях, сила тока — , сопротивление — в Омах, а время — в секундах. Численное значение величины к составляет 0,24, что соответствует току в 1 ампер, который при сопротивлении проводника в 1 Ом, выделяет в течение 1 секунды количество теплоты, равное 0,24 ккал. Поэтому для расчетов количества выделенной теплоты в калориях применяется формула Q = 0,24I 2 Rt.

При использовании системы единиц СИ измерение количества теплоты производится в джоулях, поэтому величина «к», применительно к закону Джоуля-Ленца, будет равна 1, а формула будет выглядеть: Q = I 2 Rt. В соответствии с I = U/R. Если это значение силы тока подставить в основную формулу, она приобретет следующий вид: Q = (U 2 /R)t.

Основная формула Q = I 2 Rt очень удобна для использования при расчетах количества теплоты, которое выделяется в случае последовательного соединения. Сила тока во всех проводниках будет одинаковая. При последовательном соединении сразу нескольких проводников, каждый из них выделит столько теплоты, которое будет пропорционально сопротивлению проводника. Если последовательно соединить три одинаковые проволочки из меди, железа и никелина, то максимальное количество теплоты будет выделено последней. Это связано с наибольшим удельным сопротивлением никелина и более сильным нагревом этой проволочки.

Читайте так же:
Водяная розетка для теплого плинтуса

При параллельном соединении этих же проводников, значение электрического тока в каждом из них будет различным, а напряжение на концах — одинаковым. В этом случае для расчетов больше подойдет формула Q = (U 2 /R)t. Количество теплоты, выделяемое проводником, будет обратно пропорционально его проводимости. Таким образом, закон Джоуля — Ленца широко используется для расчетов установок электрического освещения, различных отопительных и нагревательных приборов, а также других устройств, связанных с преобразованием электрической энергии в тепловую.

Закон Джоуля-Ленца. Работа и мощность электрического тока

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка

Закон Джоуля Ленца в интегральной форме в тонких проводах:

Если сила тока изменяется со временем, проводник неподвижен и химических превращений в нем нет, то в проводнике выделяется тепло.

— Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах. Тот же эффект в электрических машинах и аппаратах приводит к непроизвольным затратам энергии (потере энергии и снижении КПД). Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку; при перегрузке повышение температуры может вызвать повреждение изоляции или сокращение срока службы установки.

Урок 49 Закон Джоуля Ленца

Нагревание проводников электрическим током

Нагревание проводников
электрическим током.
Закон Джоуля – Ленца.

Главные цели использования данной презентации – это активизация познавательной деятельности учащихся, усвоение изучаемого материала учащимися на более доступном уровне, а также мотивация обучения.

Закон Ома: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению

Закон Ома: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка, силы тока и времени, в течение которого совершалась работа.

Сопротивление проводника – физическая величина, характеризующая свойства проводника. Причина сопротивления: взаимодействие движущихся электронов с ионами кристаллической решётки.

?Сформулируйте закон Ома для участка цепи.

?Что называется сопротивлением проводника?

?Чему равна работа электрического тока на участке цепи?

Тепловое действие тока Электрический ток нагревает проводник

Тепловое действие тока

Электрический ток нагревает проводник.

Электрический ток в металлическом проводнике – это упорядоченное движение электронов

Электрический ток в металлическом проводнике – это упорядоченное движение электронов. Провод – это кристалл из ионов, поэтому электронам приходится «течь» между ионами, постоянно наталкиваясь на них. При этом часть кинетической энергии электроны передают ионам, заставляя их колебаться сильнее. Кинетическая энергия ионов в узлах кристаллической решетки увеличивается, следовательно, увеличивается внутренняя энергия проводника и, следовательно, его температура. А это и означает, что проводник нагревается.

Почему же проводники нагреваются?

Рассмотрим на примере движения одного электрона по проводнику.

В жидких и газообразных проводниках движущиеся электроны и ионы наталкиваются на молекулы, как бы «раскачивают» их, увеличивают их кинетическую энергию, что и означает возрастание температуры…

В жидких и газообразных проводниках движущиеся электроны и ионы наталкиваются на молекулы, как бы «раскачивают» их, увеличивают их кинетическую энергию, что и означает возрастание температуры жидкости или газа.

Химическое действие тока

Рассмотрим на примере движения одного электрона и положительного иона в жидком проводнике (в растворе медного купороса CuSO4).

В неподвижных металлических проводниках вся работа электрического тока идет на увеличение их внутренней энергии ( на участке цепи не совершается механическая работа и ток не…

В неподвижных металлических проводниках вся работа электрического тока идет на увеличение их внутренней энергии (на участке цепи не совершается механическая работа и ток не производит химического действия).

Нагретый проводник отдает полученную энергию окружающим телам путем теплопередачи.

Учитывая, что А = UIt, получим Q = Uit.

Зная, что , что U =IR, получим Q = I2Rt.

Направление электрического тока

Q = I2Rt количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления и времени прохождения тока по проводнику

количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления и времени прохождения тока по проводнику.

Количество теплоты, выделившееся за время t, определяется законом Джоуля — Ленца:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector