Sibprompost.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Счетчик дешифратор 7 сегментного индикатора

Счетчик дешифратор 7 сегментного индикатора

Для того, чтобы на выходе счетчика получить результат счета в десятичной системе нужно было собирать схему из двух микросхем — счетчика и дешифратора. Но кроме счетчиков и дешифраторов существует еще один тип микросхем — счетчики-дешифраторы, содержащие в одном корпусе и счетчик и дешифратор, подключенный на выходе счетчика. Одна из таких, наиболее распространенных микросхем, — К561ИЕ8 (или К176ИЕ8). Микросхема содержит двоичный счетчик, счет которого ограничен до 10-ти (при поступлении на его счетный вход десятого импульса счетчик автоматически переходит в нулевое состояние), и двоично-десятичный дешифратор, который включен на выходе этого счетчика (рисунок 1).

Рис.4

Всех их объединяет то, что каждое посадочное место под цифру состоит из семи черточек, управляемых электрическими сигналами. Посмотрите на рисунок 4, там показано как из этих семи черточек, именуемых сегментами формируются все цифры от «0» до «9». Индикаторы, образующие цифры при помощи семи сегментов называются семисегментными. Сегменты обозначаются буквами от А до G. А набор уровней, при подаче которого на семи-сегментный индикатор на нем формируются цифры называется семисегментным кодом.

Таким образом, для выресовки цифры достаточно всего семи выходов дешифратора, всего семь выходов, каждый из которых подключен к определенному сегменту индикатора.А такие дешифраторы называют семисегментными.

Наиболее распространенные цифровые светодиодные семисегментные индикаторы АЛС321Б и АЛС335Б, эти индикаторы содержат восемь светодиодов, из которых семь служат для образования цифр и имеют плоскую форму, и один треугольный — для отображения десятичной запятой. Аноды этих всех светодиодов соединены вместе и выведены на 14-й вывод, а катоды разведены по остальным выводам.

Рис.5
На рисунке 5 изображен вид этих индикаторов, а также обозначено какие сегменты как именуются (А, В, С, D, Е, F, G). Справа изображен индикатор перевернутый выводами к читателю. Отсчет выводов начинается с черной или цветной точки на торце корпуса. Выводы помеченные крестиком на некоторых индикаторах (обычно более новых) могут отсутствовать, но счет выводов ведется так как будто они есть.

Для опытов мы будем использовать эти индикаторы. Но если у вас имеются другие светодиодные индикаторы, можно определить их цоколевку по справочнику, или определить цоколевку индикатора самостоятельно. Нужно иметь ввиду, что не все индикаторы имеют соединенные вместе аноды, есть и с общими катодами.

Определить это можно по маркировке, по последней букве, если это «А», — то общий катод, а если «Б» — общий анод. Обычно после буквы следует еще одна цифра, которая обозначает цвет свечения светодиодов индикатора.

И так, чтобы определить цоколевку семи-сегментного цифрового светодиодного индикатора нужна одна плоская батарейка и резистор на 200-360 Ом. Подключите резистор к одному из выводов батарейки и затем используя второй вывод батарейки и второй (свободный) вывод резистора методом проб и ошибок определите где общий вывод (обычно для индикаторов с общим катодом это вывод 12 или 4, а для индикаторов с общим анодом — 14 или 3).

А затем при подаче тока на какие выводы относительно общего зажигаются какие сегменты. Подключать к индикатору батарейку без токоограничивающего резистора нельзя, поскольку это приведет к пережиганию светодиодов и порче индикатора.

Полдела сделано, с индикаторами разобрались, теперь поговорим о семи-сегментных дешифраторах.

Рис.6
Один из наиболее распространенных семисегметных дешифраторов — микросхема К176ИД2 (или К176ИД3, что почти одно и тоже). Микросхема имеет стандартный 16-ти выводной корпус, её цоколевка показана на рисунке 6. Кроме входов, на которые подается двоичный код с выходов счетчика (входы 1, 2, 4, 8), и выходов, к которым подключаются выводы семисегментного индикатора (выходы А, В, С, D, Е, F, G) микросхема имеет еще три входа: С, S и К. Семисегментные индикаторы бывают двух типов — с общим катодом и с общим анодом.

Катоды светодиодов первых из них соединены вместе, поэтому общий катод такого индикатора подключается к минусовому полюсу питания, а для зажигания светодиодов сегментов (и запятой) требуется подача положительного напряжения на них. Если светодиоды индикатора имеют соединенные вместе аноды, то этот общий анод подключается к положительному полюсу питания, а зажигание светодиодов производится подачей на их катоды отрицательного напряжение.

Можно сказать, что для индикаторов с общим катодом требуются единицы, а для индикаторов с общим анодом — нули на выходе дешифратора. Вход S микросхемы К176ИД2 как раз и служит для выбора с каким индикатором (с общим анодом или общим катодом) предстоит работать. Если индикаторы с общим анодом (как в нашем случае) на вход S подается логическая единица, а если индикаторы с общим катодом — нужно на S подать нуль.

Читайте так же:
Сброс счетчика картриджей canon mp250

Вход К служит для гашения индикатора, например если нужно чтобы он мигал, или если нужно индикацию выключать (например, когда сетевое питание отключено и часы работают от резервной батарейки). Чтобы индикатор погас на вход К нужно подать единицу, чтобы светился — нуль.

Вход С управляет внутренней ячейкой памяти дешифратора. Ячейка памяти дает возможность записать в нее индицируемую цифру, и индикатор будет показывать эту цифру до тех пор пока на вход С не поступит команда сменить запись. Например, если в приборе, в котором работает этот дешифратор, имеется счетчик, состояние которого быстро меняется и нужно показывать на табло только состояние этого счетчика в какой-то временной момент, например через каждые две секунды.

Тогда на вход С подаются короткие положительные импульсы в тот момент когда нужно показать состояние счетчика. В этот момент двоичный код с выходов счетчика записывается в память дешифратора и на индикаторном табло будет светится цифра, соответствующая этому коду, все время до тех пор пока не поступит следующий импульс на вход С.

Счетчик дешифратор 7 сегментного индикатора

2.4 Микросхемы комбинационного типа

  • 2.4.1 Дешифраторы и преобразователи кодов
  • Ключи и мультиплексоры
  • Сумматоры и другие элементы

2.4.1. Дешифраторы и преобразователи кодов


Микросхемы К176ИД1 и К561ИД1 (рис. 232) -дешифраторы на 10 выходов. Микросхемы имеют 4 входа для подачи кода 1-2-4-8. Выходной сигнал лог. 1 появляется на том выходе дешифратора, номер которого соответствует десятичному эквиваленту входного кода, на остальных выходах дешифратора при этом лог. 0. При подаче на входы кодов, соответствующих десятичным числам, превышающим 9, активизируются выходы 8 или 9 в зависимости от сигнала, поданного на вход 1 — при лог. 0 на этом входе лог. 1 появляется на выходе 8, при лог. 1 — на выходе 9. Микросхемы не имеют специального входа стробирования, однако для построения дешифраторов с числом выходов более 10 можно использовать для стробирования вход 8 микросхем, так как выходной сигнал может появиться на выходах 0-7 лишь при лог. 0 на входе 8(рис. 233,234).

Микросхема К176ИД2 (рис. 235) — преобразователь двоично-десятичного кода в код семисегментного индикатора, включает в себя также триггеры, позволяющие запомнить входной код. Микросхема имеет четыре информационных входа для подачи кода 1-2-4-8 и три управляющих входа. Вход S, так же как и в микросхемах К176ИЕЗ и К176ИЕ4, определяет полярность выходных сигналов: при лог. 1 на входе S на выходах лог. 0 для зажигания сегментов, при лог. 0 на вхо-де S — лог. 1 для зажигания. При подаче лог. 1 на вход К происходит гашение индицируемого знака, лог. 0 на входе К разрешает индикацию. Вход С управляет работой триггеров памяти — при подаче на вход С лог. 1 триггеры превращаются в повторители и изменение входных сигналов на входах 1-2-4-8 вызывает соответствующее изме-нение выходных сигналов. Если же на вход С подать лог.0,запоминаются сигналы, имевшиеся на входах перед подачей лог. 0, микросхема на изменение сигналов на входах 1-2-4-8 не реагирует.

Согласование выходов микросхем К176ИД2 с семисегментными индикаторами может производиться так же, как и выходов счетчиков К176ИЕЗ и К176ИЕ4. Ток короткого замыкания микросхем К176ИД2 выше, чем у счетчиков, и численно в миллиамперах примерно равен напряжению питания в вольтах. Поэтому можно непосредственно подключать выходы микросхем К176ИД2 к электродам полупроводниковых семисегментных индикаторов серий АЛ305, АЛС321, АЛС324, помня, конечно, о том, что разброс яркости свечения при этом может быть заметен, а сама яркость может быть меньше номинальной. Микросхема К176ИДЗ имеет ту же разводку выводов и ту же логику работы, что и К176ИД2. Отличие заключается в том, что выходные каскады микросхемы выполнены с стоком, поэтому их можно подключать непосредственно к анодам вакуумных люминесцентных индикаторов (рис. 179 с исключенными сборками DA1, DA2). Управляющий вход S микросхемы К176ИДЗ должен быть при этом соединен с общим проводом.

Микросхема 564ИД4 — преобразователь двоично-десятичного кода в код семисегментного индикатора (рис. 235), предназначена прежде всего для управления жидкокристаллическими индикаторами. Так же, как и микросхема К176ИД2, преобразователь позволяет изменять полярность выходных сигналов подачей сигнала управления на вход S — при лог. 0 включению сегментов соответствуют лог. 1 на выходах а — g, при лог. 1 на входе S включению сегментов соответствуют лог. 0. Так же, как и микросхема 564УМ1, микросхема имеет три вывода питания и увеличенную амплитуду выходных сигналов. Это позволяет при напряжении питания большей части микросхем 3. 5 В управлять и такими индикаторами, которые требуют напряжение 10-15 В

Читайте так же:
Как пользоваться водой при снятом счетчике

Подключение жидкокристаллического индикатора к микросхеме 564ИД4 проиллюстрировано на рис. 236. На вход S микросхемы подается меандр с частотой 30. 200 Гц, этот сигнал проходит без инверсии на выход Р, увеличиваясь по амплитуде, как это описано выше для микросхемы 564УМ1. При подаче на входы 1-8 двоичного кода знака на выходах, соответствующих

сегментам, которые надо индицировать, напряжение начинает меняться в противофазе с напряжением на выходе Р, и эти сегменты становятся темными. На тех же выходах, которые соответствуют неиндицируемым сегментам, напряжение меняется синфазно с напря-жением на выходе Р, и сегменты неотличимы от фона. При подаче на входы кодов чисел 0. 9 на индикаторе формируется изображение соответствующих цифр, для кодов 10. 13 индицируются буквы , , , , для кода 14 — знак , при подаче кода 15 происходит гашение индикатора.

Нагрузочная способность микросхемы такая же, как у 564УМ1, что позволяет использовать микросхему для управления светодиодными индикаторами как с общим анодом, так и с общим катодом без токоограничительных резисторов при напряжении питания 5. 10 В и с ограничительными резисторами при 10. 15 В.

Микросхема 564ИД5 отличается от 564ИД4 наличием на ее входах 1-2-4-8 статического регистра хранения информации со входом записи С и отсутствием выхода Р (рис. 235). Запись в регистр происходит так же, как и в регистр микросхем К176ИД2 и К176ИДЗ, при

подаче на вход С импульса положительной полярности, регистр при этом и пропускает на свои выходы (на входы преобразователя кода) информацию со входов. В режим хранения регистр переходит в момент спада входного импульса.

Интересно отметить, что одноименные входы и выходы микросхем К176ИД2, К176ИДЗ, 564ИД4,564ИД5 разведены на выводы с одинаковыми номерами.

На рис. 237 приведен пример использования микросхем 564ИД5 и 564УМ1 для управления индикатором ИЖКЦ2-5/12. Этот пятиразрядный индикатор предназначен для использования в цифровом частотомере и, кроме возможности индикации пяти цифр, имеет четыре десятичные запятые (сегменты h) и символ , перед которым могут индицироваться символы или .

На микросхемы DD1 — DD5 подводятся коды цифр от микросхем счетчиков, на DD6 — на вход D, соответствующий необходимой запятой — лог. 1, на остальные входы — лог. 0. При подаче импульса положительной полярности на входы С происходит запоминание информации в регистрах микросхем. На входы D двух нижних триггеров микросхемы DD6 поданы разнополярные сигналы, а на входы S всех микросхем — меандр с частотой 30. 200 Гц. В результате на выводы и индикатора HL1 приходят противофазные сигналы и символы постоянно индицируются. При необходимости индикации символов или на соответствующие входы микросхемы DD7 следует подать лог. 1, при отсутствии такой необходимости — лог. 0.

Микросхема КР1561ИД6 — два стробируемых дешифратора на два входа и четыре прямых выхода (рис. 238). При лог. 0 на входе S лог. 1 появляется на том выходе дешифратора, номер которого соответствует

десятичному эквиваленту входного кода, поданному на входы 1 и 2. При лог. 1 на входе S на всех выходах дешифратора лог. 0.

Микросхема КР1561ИД7 — два аналогичных дешифратора с инверсными выходами (рис. 238). Наличие инверсных выходов позволяет удобно использовать такую микросхему для стробирования дешифраторов при их соединении для увеличения числа входов (рис. 239), а также описываемых далее мультиплексоров.

При необходимости построения дешифратора на 8 выходов из микросхем КР1561ИД6 или КР1561ИД7 их следует дополнить одним инвертором (рис. 240).

Микросхема 564ИК2 (рис. 241) не является комбинационной, так же как при строгом отношении не являются комбинационными микросхемы К176ИД2, К176ИДЗ и 564ИД5, содержащие регистры хранения информации, но их удобно рассматривать в этом разделе как наиболее близкие к дешифраторам и преобразователям кода. Микросхема 564ИК2 предназначена для управления пятиразрядным полупроводниковым семисегментным индикатором или пятью отдельными индикаторами в динамическом режиме. Она содержит преобразователь двоичного кода 1-2-4-8 в код семисегментного индикатора (входы 1, 2, 4, 8 и Е, выходы а, Ь, с, d, e, f, g), генератор на инвертирующем триггере Шмитта (вход Т, выход G), счетчик-делитель на 5, вход которого подключен к выходу генератора. В свою очередь

Читайте так же:
Pro 55r счетчик банкнот

выходы счетчика 1, 2, 4 подключены ко входам дешифратора, имеющего пять инверсных выходов HL1 — HL5.

Преобразователь двоичного кода в код семисегментного индикатора имеет выходы с открытым стоком транзисторов с каналом р-типа. Он обеспечивает на семисегментном индикаторе с общим катодом индикацию цифр 0-9 при подаче на его входы соответствующего двоичного кода и букв , , , , , при подаче кода, соответствующего десятичным числам от 10 до 15. Форма индицируемых букв показана на рис. 242.

Цифровой индикатор на К176ИЕ4

Приведенная ниже схема счетчика, представляет собой простейший пример применения микросхем К176ИЕ4, являющихся десятичными счётчиками с дешифратором.

На микросхеме создан генератор импульсов для переключения счётчиков. Резистором R1 и конденсатором C1 (главным образом резистором) устанавливается частота импульсов. При таких элементах, как на схеме, частота получалась 1,2 с.

К176ИЕ4 – счётчик импульсов с выводом состояния счётчика на семисегментный индикатор. Она считает импульсы, поступившие на вход С (4 нога). По спаду этих импульсов происходит переключение счётчика. С вывода «J» (3 нога микросхемы) снимается частота в 4 раза меньшая тактовой, а с выхода «Р» (2 нога микросхемы) частота в 10 раз меньше тактовой на ней происходит спад логической единицы при переходе состояния счётчика из «9» в «0». Она используется для подключения следующего счётчика высшего разряда. Вход R служит для обнуления счётчиков, оно происходит при появление на нём логической единицы. Следует отметить, что если этот вход висит в воздухе, ни к чему не присоединённый, то микросхема чаще всего воспринимает там единицу, и счёт не производит. Во избежание этого необходимо подтягивать его к земле, соединяя с общим минусом через резистор 100 – 300 Ом, или напрямую, если не планируется использовать функцию обнуления. Вход S предназначен для переключения режимов работы микросхемы с разными индикаторами. Если этот вывод соединить с + питания, то микросхема переходит в режим работы с индикатором с общим анодом, если с — питания – то в режим индикатора с общим катодом. Выхода 1, 8 – 13 используются для подсоединения индикатора.

IC1 считает поступившие на её вход 4 импульсы генератора, при переходе её с 9 на 0 на выходе 2 происходит спад логической единицы, и IC2 переключается на 1 значение вверх.

Ключ S1 управляет питанием, S2 обнуляет счётчики (вместо него я использовал геркон и магнит).

Индикатор необходим семисегментный двухразрядный (или два семисегментных индикатора). Если индикатор с общим катодом (минусом), то ножки 6 микросхем К176ИЕ4 следует соединить с землёй, а если с общим анодом (плюсом), то с плюсом источника питания. На схеме начерчено для общего анода.

Привожу также печатную плату. На ней я не чертил сам индикатор, так как цоколёвки у них сильно различаются. Поэтому читателю придётся самому доработать плату под имеющийся у него индикатор. Также обращаю внимание на то, что на плате 6 ноги микросхем соединены с + питания, если же у вас индикатор с общим «минусом», то вам необходимо соединить их с – питания.

  • микросхема К176ЛЕ5 – 1 штука;
  • микросхема К176ИЕ4 – 2 штуки;
  • резистор 1 МОм;
  • резистор 220 Ом;
  • конденсатор 220 нФ.

Вот и всё, схема в принципе не требует настройки.

Дешифратор 7 сегментного индикатора

Отчет о лабораторной работе

Тема: Исследование Работы дешифраторов

Цель:Исследовать работу шифраторов и дешифраторов

Оборудование:ПК, программное обеспечение: ОС Windows

Ход Работы

1. Исследовал работу Дешифратора на логических элементах

2. Преобразователь кода для семисегментного индикатора.

3. Дешифратор для 7-сегментного индикатора на микросхеме.

1.Дешифраторы
Я использовал простейшие логические элементы, которые можно сконструировать более сложные устройства, реализующие соответствующие функции. Такими устройствами являются, например, шифраторы и дешифраторы.

Дещифраторы, назваемые также кодерами, могут осуществлять преобразование десятичных чисел (позиционный код) в двоичную систему счисления. Шифратор работает следующим образом: шифратор имеет n входов, в текущий момент времени только на один из которых подается сигнал (это вход будет активным); по номеру активного входа на выходах дешифратора формируется двоичных код, соответствующей позиции активного входа. Например, если активным был пятый вход, то на выходах будет комбинация (за исключением старших нулей): 510=1012.
Дешифратор или декодер выполняет обратную по отношению к шифрованию операцию, т.е. преобразует двоичный код в десятичный. Входы дешифратора служат для подачи двоичных числе, а выходы последовательно нумеруются десятичными числами. При подаче на входы двоичного числа выходной сигнал появляется на выходе, который имеет номер соответствующего десятичного числа.
Существует два типа дешифраторов: логические дешифраторы и дисплейные дешифраторы/формирователи. Логические дешифраторы представляют собой схемы средней интеграции (микросхемы, имеющие с своем составе до 100 ЛЭ), управялемые адресом. Они выбирают и приводят в активное состояние конкретный выход определяемыый адресом. Дешифраторы применяются в структурах выборки адреса запоминающих устройства, разуплотнения маршрутизации данных и т.п.

Читайте так же:
Как добавить счетчик метрики тильда

3. Дешифратор на логических элементах

Трехвходовый дешифратор на логических элементах «И» и «НЕ».

4. Преобразователь кода для семисегментного индикатора.

Дешифраторы и дисплейные дишеифраторы/формирователи формируют цифровые коды для семисегментного индикатора, и затем обеспечивают пеердачу кода на формирователь или непосредственно на дисплей. В семисегментном индикаторе десятичных цифр каждый сегмент (их семь) представляет собой отдельный светоизлучающий элемент (используется также буквенная идентификация сегментов, соответственно от a до g). Светящееся изображение цифр или знаков получается при подаче напряжения на определенные сегменты:
Такой преобразователь кода должен удовлетворять таблице истинности, приведенной ниже:


Дешифратор для 7-сегментного индикатора на логических элементах.

Дешифратор для 7-сегментного индикатора на микросхеме.

Данный дешифратор преобразует двоично-десятичный код (binary-decimal code), подаваемый на входы A,B,C,D, в код управления 7-сегментным индикатором. Двоично-десятичный код представляет собой упорядоченный по разрадам набор двоичных чисел, в котором разрядам приписаны следующие «веса» в порядке уменьшения старшинства. D – 8, С – 4, В – 2, A – 1. Поэтому данный код называют также кодом 8-4-2-1. Фактически в этом коде записаны десятичные числа от 0 до 15 во входных переменных таблицы истинности:

Дешифратор кода для 7-сегментного индикатора на микросхеме 7448

Вывод: Исследовал работу шифраторов и дешифраторов

1. Дешифраторы
Используя простейшие логические элементы, можно сконструировать более сложные устройства, реализующие соответствующие функции. Такими устройствами являются, например, шифраторы и дешифраторы.

Шифраторы, назваемые также кодерами, могут осуществлять преобразование десятичных чисел (позиционный код) в двоичную систему счисления. Шифратор работает следующим образом: шифратор имеет n входов, в текущий момент времени только на один из которых подается сигнал (это вход будет активным); по номеру активного входа на выходах дешифратора формируется двоичных код, соответствующей позиции активного входа. Например, если активным был пятый вход, то на выходах будет комбинация (за исключением старших нулей): 510=1012.
Дешифратор или декодер выполняет обратную по отношению к шифрованию операцию, т.е. преобразует двоичный код в десятичный. Входы дешифратора служат для подачи двоичных числе, а выходы последовательно нумеруются десятичными числами. При подаче на входы двоичного числа выходной сигнал появляется на выходе, который имеет номер соответствующего десятичного числа.
Существует два типа дешифраторов: логические дешифраторы и дисплейные дешифраторы/формирователи. Логические дешифраторы представляют собой схемы средней интеграции (микросхемы, имеющие с своем составе до 100 ЛЭ), управялемые адресом. Они выбирают и приводят в активное состояние конкретный выход определяемыый адресом. Дешифраторы применяются в структурах выборки адреса запоминающих устройства, разуплотнения маршрутизации данных и т.п.

Отчет о лабораторной работе

Тема: Исследование Работы дешифраторов

Цель:Исследовать работу шифраторов и дешифраторов

Оборудование:ПК, программное обеспечение: ОС Windows

Ход Работы

1. Исследовал работу Дешифратора на логических элементах

2. Преобразователь кода для семисегментного индикатора.

3. Дешифратор для 7-сегментного индикатора на микросхеме.

1.Дешифраторы
Я использовал простейшие логические элементы, которые можно сконструировать более сложные устройства, реализующие соответствующие функции. Такими устройствами являются, например, шифраторы и дешифраторы.

Дещифраторы, назваемые также кодерами, могут осуществлять преобразование десятичных чисел (позиционный код) в двоичную систему счисления. Шифратор работает следующим образом: шифратор имеет n входов, в текущий момент времени только на один из которых подается сигнал (это вход будет активным); по номеру активного входа на выходах дешифратора формируется двоичных код, соответствующей позиции активного входа. Например, если активным был пятый вход, то на выходах будет комбинация (за исключением старших нулей): 510=1012.
Дешифратор или декодер выполняет обратную по отношению к шифрованию операцию, т.е. преобразует двоичный код в десятичный. Входы дешифратора служат для подачи двоичных числе, а выходы последовательно нумеруются десятичными числами. При подаче на входы двоичного числа выходной сигнал появляется на выходе, который имеет номер соответствующего десятичного числа.
Существует два типа дешифраторов: логические дешифраторы и дисплейные дешифраторы/формирователи. Логические дешифраторы представляют собой схемы средней интеграции (микросхемы, имеющие с своем составе до 100 ЛЭ), управялемые адресом. Они выбирают и приводят в активное состояние конкретный выход определяемыый адресом. Дешифраторы применяются в структурах выборки адреса запоминающих устройства, разуплотнения маршрутизации данных и т.п.

Читайте так же:
Разбили счетчик куда обращаться

3. Дешифратор на логических элементах

Трехвходовый дешифратор на логических элементах «И» и «НЕ».

4. Преобразователь кода для семисегментного индикатора.

Дешифраторы и дисплейные дишеифраторы/формирователи формируют цифровые коды для семисегментного индикатора, и затем обеспечивают пеердачу кода на формирователь или непосредственно на дисплей. В семисегментном индикаторе десятичных цифр каждый сегмент (их семь) представляет собой отдельный светоизлучающий элемент (используется также буквенная идентификация сегментов, соответственно от a до g). Светящееся изображение цифр или знаков получается при подаче напряжения на определенные сегменты:
Такой преобразователь кода должен удовлетворять таблице истинности, приведенной ниже:


Дешифратор для 7-сегментного индикатора на логических элементах.

Дешифратор для 7-сегментного индикатора на микросхеме.

Данный дешифратор преобразует двоично-десятичный код (binary-decimal code), подаваемый на входы A,B,C,D, в код управления 7-сегментным индикатором. Двоично-десятичный код представляет собой упорядоченный по разрадам набор двоичных чисел, в котором разрядам приписаны следующие «веса» в порядке уменьшения старшинства. D – 8, С – 4, В – 2, A – 1. Поэтому данный код называют также кодом 8-4-2-1. Фактически в этом коде записаны десятичные числа от 0 до 15 во входных переменных таблицы истинности:

Дешифратор кода для 7-сегментного индикатора на микросхеме 7448

Вывод: Исследовал работу шифраторов и дешифраторов

1. Дешифраторы
Используя простейшие логические элементы, можно сконструировать более сложные устройства, реализующие соответствующие функции. Такими устройствами являются, например, шифраторы и дешифраторы.

Шифраторы, назваемые также кодерами, могут осуществлять преобразование десятичных чисел (позиционный код) в двоичную систему счисления. Шифратор работает следующим образом: шифратор имеет n входов, в текущий момент времени только на один из которых подается сигнал (это вход будет активным); по номеру активного входа на выходах дешифратора формируется двоичных код, соответствующей позиции активного входа. Например, если активным был пятый вход, то на выходах будет комбинация (за исключением старших нулей): 510=1012.
Дешифратор или декодер выполняет обратную по отношению к шифрованию операцию, т.е. преобразует двоичный код в десятичный. Входы дешифратора служат для подачи двоичных числе, а выходы последовательно нумеруются десятичными числами. При подаче на входы двоичного числа выходной сигнал появляется на выходе, который имеет номер соответствующего десятичного числа.
Существует два типа дешифраторов: логические дешифраторы и дисплейные дешифраторы/формирователи. Логические дешифраторы представляют собой схемы средней интеграции (микросхемы, имеющие с своем составе до 100 ЛЭ), управялемые адресом. Они выбирают и приводят в активное состояние конкретный выход определяемыый адресом. Дешифраторы применяются в структурах выборки адреса запоминающих устройства, разуплотнения маршрутизации данных и т.п.

Дешифраторы выпускаются в виде отдельных микросхем или используются в составе более сложных микросхем. В настоящее время десятичные или восьмеричные дешифраторы используются в основном как составная часть других микросхем, таких как мультиплексоры, демультиплексоры, ПЗУ или ОЗУ.

Условно-графическое обозначение микросхемы дешифратора на принципиальных схемах приведено на рисунке 2. На этом рисунке приведено обозначение двоично-десятичного дешифратора, полная внутренняя принципиальная принципиальная схема которого изображена на рисунке 1.

Рисунок 1 – Условно-графическое обозначение двоично-десятичного дешифратора

Точно таким же образом можно получить принципиальную схему и для любого другого декодера (дешифратора). Наиболее распространены схемы восьмеричных и шестнадцатеричных дешифраторов. Для индикации такие дешифраторы в настоящее время практически не используются. В основном такие дешифраторы используются как составная часть более сложных цифровых модулей.

Семисегментный дешифратор

Для отображения десятичных и шестнадцатеричных цифр часто используется семисегментный индикатор. Изображение семисегментного индикатора и название его сегментов приведено на рисунке 3.

Рисунок 2 – Изображение семисегментного индикатора и название его сегментов

Для изображения на таком индикаторе цифры 0 достаточно зажечь сегменты a, b, c, d, e, f. Для изображения цифры ‘1’ зажигают сегменты b и c. Точно таким же образом можно получить изображения всех остальных десятичных или шестнадцатеричных цифр. Все комбинации таких изображений получили название семисегментного кода.

Составим таблицу истинности дешифратора, который позволит преобразовывать двоичный код в семисегментный. Пусть сегменты зажигаются нулевым потенциалом. Тогда таблица истинности семисегментного дешифратора примет вид, приведенный в таблице 1. Конкретное значение сигналов на выходе дешифратора зависит от схемы подключения сегментов индикатора к выходу микросхемы. Эти схемы мы рассмотрим позднее, в главе, посвящённой отображению различных видов информации.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector