Sibprompost.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Закон Джоуля; Ленца

Закон Джоуля — Ленца

Электрические нагреватели всевозможных типов используются человечеством уже столетия, благодаря свойству электрического тока выделять тепло при прохождении через проводник. У этого явления есть и негативный фактор – перегретая электропроводка из-за слишком большого тока часто становилась причиной короткого замыкания и возникновения пожаров. Выделение тепла от работы электрического тока изучалось в школьном курсе физики, но многие позабыли эти знания.

Впервые зависимость выделения теплоты от силы электрического тока была сформулирована и математически определена Джеймсом Джоулем в 1841 году, и чуть позже, в 1842 г., независимо от него, Эмилем Ленцем. В честь этих физиков и был назван закон Джоуля-Ленца, по которому рассчитывают мощность электронагревателей и потери на тепловыделение в линиях электропередач.

Определение закона Джоуля – Ленца

В словесном определении, согласно исследований Джоуля и Ленца закон звучит так:

Количество теплоты, выделяемой в определенном объеме проводника при протекании электрического тока прямо пропорционально умножению плотности электрического тока и величины напряженности электрического поля

В виде формулы данный закон выглядит следующим образом:

Выражение закона Джоуля — Ленца

Поскольку описанные выше параметры редко применяются в обыденной жизни, и, учитывая, что почти все бытовые расчеты выделения теплоты от работы электрического тока касаются тонких проводников (кабели, провода, нити накаливания, шнуры питания, токопроводящие дорожки на плате и т. п.), используют закон Джоуля Ленца с формулой, представленной в интегральном виде:

Интегральная форма закона

В словесном определении закон Джоуля Ленца звучит так:

Словесное определение закона Джоуля — Ленца

Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:

Применив закон Ома и алгебраические преобразования, получаем приведенные ниже эквивалентные формулы:

Эквивалентные выражения теплоты согласно закона Ома

Применение и практическое значение закона Джоуля – Ленца

Исследования Джоуля и Ленца в области тепловыделения от работы электрического тока существенно продвинули научное понимание физических процессов, а выведенные основные формулы не претерпели изменений и используются по сей день в различных отраслях науки и техники. В сфере электротехники можно выделить несколько технических задач, где количество выделяемой при протекании тока теплоты имеет критически важное значение при расчете таких параметров:

  • теплопотери в линиях электропередач;
  • характеристики проводов сетей электропроводки;
  • тепловая мощность (количество теплоты) электронагревателей;
  • температура срабатывания автоматических выключателей;
  • температура плавления плавких предохранителей;
  • тепловыделение различных электротехнических аппаратов и элементов радиотехники.

Электроприборы, в которых используется тепловая работа тока

Тепловое действие электрического тока в проводах линий электропередач (ЛЭП) является нежелательным из-за существенных потерь электроэнергии на тепловыделение.

По различным данным в линиях электропередач теряется до 40% всей производимой электрической энергии в мире. Для уменьшения потерь при передаче электроэнергии на большие расстояния, поднимают напряжение в ЛЭП, производя расчеты по производным формулам закона Джоуля – Ленца.

Диаграмма всевозможных потерь электроэнергии, среди которых теплопотери на воздушных линиях составляют львиную долю (64%)

Очень упрощенно тепловую работу тока можно описать следующим образом: двигаются электроны между молекулами, и время от времени сталкиваются с ними, отчего их тепловые колебания становятся более интенсивными. Наглядная демонстрация тепловой работы тока и ассоциативные пояснения процессов показаны на видео ниже:

Расчеты потерь электроэнергии в линиях электропередач

В качестве примера можно взять гипотетический участок линии электропередач от электростанции до трансформаторной подстанции. Поскольку провода ЛЭП и потребитель электроэнергии (трансформаторная подстанция) соединены последовательно, то через них течет один и тот же ток I. Согласно рассматриваемому тут закону Джоуля – Ленца количество выделяемой на проводах теплоты Qw (теплопотерь) рассчитывается по формуле:

Производимая электрическим током мощность (Qc) в нагрузке рассчитывается согласно закону Ома:

Таким образом, при равенстве токов, в первую формулу можно вставить вместо I выражение Qc/Uc, поскольку I = Qc/Uc:

Читайте так же:
Вещество плохо проводящее теплоту или электрический ток это

Если проигнорировать зависимость сопротивления проводников от изменения температуры, то можно считать Rw неизменным (константой). Таким образом, при стабильном энергопотреблении потребителя (трансформаторной подстанции), тепловыделение в проводах ЛЭП будет обратно пропорционально квадрату напряжения в конечной точке линии. Другими словами, чем больше напряжение электропередачи, тем меньше потери электроэнергии.

Для передачи электроэнергии высокого напряжения требуются большие опоры ЛЭП

Работа закона Джоуля – Ленца в быту

Данные расчеты справедливы также и в быту при передаче электроэнергии на малые расстояния – например, от ветрогенератора до инвертора. При автономном энергоснабжении ценится каждый Ватт выработанной низковольтным ветряком энергии, и возможно, будет выгодней поднять напряжение трансформатором прямо у ветрогенератора, чем тратиться на большое сечение кабеля, чтобы уменьшить потери электроэнергии при передаче.

При значительном удалении низковольтного ветрогенератора переменного тока для уменьшения потерь электроэнергии будет выгодней подключение через повышающий трансформатор

В бытовых сетях электропроводки расстояния крайне малы, чтобы уменьшения тепловых потерь поднимать напряжение, поэтому при расчете проводки учитывается тепловая работа тока, согласно закону Джоуля – Ленца при выборе поперечного сечения проводов, чтобы их тепловой нагрев не привел к оплавлению и возгоранию изоляции и окружающих материалов. Выбор кабеля по мощности и расчеты сечения электропроводки проводятся согласно таблиц и нормативных документов ПУЭ, и подробно описаны на других страницах данного ресурса.

Соотношения силы тока и поперечного сечения проводников

При расчете температуры нагрева радиотехнических элементов, биметаллической пластины автоматического выключателя или плавкого предохранителя используется закон Джоуля – Ленца в интегральной форме, так как при росте температуры изменяется сопротивление данных материалов. При данных сложных расчетах также учитываются теплоотдача, нагрев от других источников тепла, собственная теплоемкость и множество других факторов.

Программное моделирование тепловыделения полупроводникового прибора

Полезная тепловая работа электрического тока

Тепловыделяющая работа электрического тока широко применяется в электронагревателях, в которых используется последовательное соединение проводников с различным сопротивлением. Данный принцип работает следующим образом: в соединенных последовательно проводниках течет одинаковый ток, значит, согласно закону Джоуля – Ленца, тепла выделится больше у материала проводника с большим сопротивлением.

Спираль с повышенным сопротивлением накаляется, но питающие провода остаются холодными

Таким образом, шнур питания и подводящие провода электроплитки остаются относительно холодными, в то время как нагревательный элемент нагревается до температуры красного свечения. В качестве материала для проводников нагревательных элементов используются сплавы с повышенным (относительно меди и алюминия электропроводки) удельным сопротивлением — нихром, константан, вольфрам и другие.

Нить лампы накаливания изготовляют из тугоплавких вольфрамовых сплавов

При параллельном соединении проводников тепловыделение будет больше на нагревательном элементе с меньшим сопротивлением, так как при его уменьшении возрастает ток относительного соседнего компонента цепи. В качестве примера можно привести очевидный пример свечения двух лампочек накаливания различной мощности – у более мощной лампы тепловыделение и световой поток больше.

Если прозвонить омметром лампочки, то окажется, что у более мощной лампы сопротивление меньше. На видео ниже автор демонстрирует последовательное и параллельное подключение, но к сожалению, он ошибся в комментарии — будет ярче светить лампа с большим сопротивлением, а не наоборот.

Нагревание проводников электрическим током. Закон Джоуля — Ленца — ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ

Тип урока: урок общеметодологической направленности.

Используемые технологии: здоровьесбережения, информационно-коммуникационные, развития критического мышления, развития исследовательских навыков.

Цели: познакомить учащихся с законом Джоуля — Ленца; дать представление о нагревании проводников при прохождении электрического тока с точки зрения закона сохранения и превращения энергии.

Формируемые УУД: предметные: научиться объяснять явление нагревания проводников при прохождении электрического тока, применяя закон сохранения и превращения энергии; формулировать закон Джоуля — Ленца; рассчитывать количество теплоты, выделяющееся при прохождении тока по проводнику; метапредметные: планировать учебное сотрудничество с учащимися и учителем, работать индивидуально и в группе, находить общее решение и разрешать конфликты на основе согласования позиций и отстаивания интересов, определять способы действий в рамках предложенных условий и требований; ставить учебную задачу, составлять план и последовательность действий, осуществлять контроль в форме сравнения результата и способа действий с эталоном с целью обнаружения отличий и отклонений от него; самостоятельно выделять познавательную цель, устанавливать причинно-следственные связи; формирование умения видеть физические явления и законы в технических решениях.

Читайте так же:
Ток теплового расцепителя магнитного пускателя

Приборы и материалы: источники тока, лампа накаливания, ключ, реостат, амперметр, вольтметр, медный, стальной, никелиновые провода, соединительные провода, электронное приложение к учебнику.

I. Организационный этап

(Учитель и ученики приветствуют друг друга, выявляются отсутствующие.)

II. Актуализация знаний. Проверка домашнего задания

(Учитель проводит фронтальный опрос по вопросам и заданиям учебника. Два ученика записывают на доске решение дополнительной задачи.)

III. Изучение нового материала

Демонстрация 1. Соберем электрическую цепь, в которую последовательно включим лампу накаливания и реостат. Для измерения силы тока и напряжения на лампе применяем демонстрационные амперметр и вольтметр.

В проводнике при протекании тока происходит превращение электрической энергии во внутреннюю, и проводник нагревается. Почему при прохождении электрического тока проводник нагревается? Вы неоднократно наблюдали тепловое действие тока в бытовых приборах. На опыте с лампой накаливания вы убедились, что накал лампы возрастал при увеличении тока. Но нагревание проводников зависит не только от силы тока, но и от сопротивления проводников.

Демонстрация 2. Опыт, показывающий тепловое действие тока в цепочке, состоящей из трех последовательно соединенных проводников разного сопротивления: медного, стального и никелинового. Ток во всех последовательно соединенных проводниках одинаков. Количество же выделяющейся теплоты в проводниках разное.

Вывод. Нагревание проводников зависит от их сопротивления. Чем больше сопротивление проводника, тем больше он нагревается.

(Ученики отвечают на вопросы.)

— Из какого материала необходимо изготовлять спирали для лампочек накаливания?

— Какими свойствами должен обладать металл, из которого изготовляют спирали нагревательных элементов?

Работу силы тока рассчитывают по формуле

Кроме того, вам известно, что в неподвижных проводниках вся работа тока идет лишь на нагревание проводников, т. е. на то, чтобы увеличить их внутреннюю энергию.

Следовательно, количество теплоты равно

Из закона Ома для участка цепи

Сформулируем закон Джоуля — Ленца: количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.

Необходимо заметить, что формулы вообще говоря, не идентичны. Дело в том, что первая формула всегда определяет превращение электрической энергии во внутреннюю, т. е. количество теплоты. По другим формулам в общем случае определяют расход электрической энергии, идущей как на нагревание, так и на совершение механической работы. Для неподвижных проводников эти формулы совпадают.

(Учитель демонстрирует учащимся анимационный ролик 112 “Закон Джоуля — Ленца” из электронного приложения к учебнику.)

IV. Закрепление изученного материала

(Ученики коллективно разбирают решение задач.)

1. Две проволоки одинаковой длины и сечения — железная и медная — соединены параллельно. В какой из них выделится большее количество теплоты?

Решение. Медная проволока обладает меньшим удельным сопротивлением по сравнению с железной, следовательно, и ее сопротивление будет меньше при одинаковых размерах проволоки. При параллельном включении напряжение на проволоках будет одинаковым, следовательно, учитывая выражение большее количество теплоты выделится на проволоке, обладающей меньшим сопротивлением, т. е. на медной.

2. Спираль электрической плитки укоротили. Как изменится количество выделяемой в ней теплоты, если плитку включить в то же напряжение?

Решение. Уменьшение длины спирали приведет к уменьшению ее сопротивления, а значит, к возрастанию выделяемого количества теплоты при включении в такое же напряжение.

3. Какое количество теплоты выделится в течение часа в проводнике сопротивлением 10 Ом при силе тока 2 А?

4. Определите количество теплоты, которое дает электроприбор мощностью 2 кВт за 10 мин работы.

Читайте так же:
Всегда ли электрический ток производит тепловое действие химическое действие

(Ученики оценивают свою работу на уроке и качество усвоения материала, заполнив анкету.)

1. Вспомни и запиши тему урока.

2. Какие термины, факты, закономерности ты усвоил(а) на уроке?

3. Считаешь ли ты полезными, интересными полученные знания?

4. Какую оценку за урок ты бы себе поставил(а)?

1. § 53 учебника, вопросы к параграфу.

2. Выполнить упр. 37 нас. 151 учебника.

3. Подготовить доклад (по желанию). Примерные темы докладов: “Первое электрическое освещение свечами П.Н. Яблочкова”, “Лампы накаливания и история их изобретения”, “Использование теплового действия тока в промышленности и сельском хозяйстве”, “Электрические нагревательные приборы”.

Джеймс Прескотт Джоуль (1818—1889)

Родился Джоуль в Манчестере 24 декабря 1818 г., по профессии был пивоваром. Первые работы Джоуля в физике связаны с изобретением электромагнитных аппаратов, которые были ярким примером превращаемости физических сил.

Джоуль был прекрасным экспериментатором. Исследуя законы выделения теплоты электрическим током, он понял, что опыты с гальваническими источниками не дают возможности ответить на вопрос, какой вклад в нагрев проводника вносит переносимая теплота химических реакций, а какой — сам ток. В результате многочисленных опытов Джоуль пришел к выводу, что теплоту можно получать с помощью механических сил.

В 1843 г. Джоуль нашел механический эквивалент теплоты. Эту величину впоследствии он определял различными способами. Опыты Джоуля просты по идее, но в каждом из них можно найти какую-нибудь экспериментальную тонкость. Например, для предотвращения движения всей массы воды к боковым стенкам калориметра в радиальном направлении были прикреплены четыре ряда пластинок; в целях теплоизоляции металлическая ось разделена на две части деревянным цилиндром.

Джоуль внес большой вклад в кинетическую теорию газов, открыв вместе с Томсоном эффект изменения температуры газа при его расширении (Эффект Джоуля — Томсона). Из работ Джоуля непосредственно следовало, что теплота не является веществом, что она состоит в движении частиц. Все это, несомненно, способствовало утверждению и признанию закона сохранения и превращения энергии, открытие которого явилось величайшим завоеванием науки XIX в.

Значение этого закона для науки трудно переоценить. На основе законов сохранения, и в частности закона сохранения и превращения энергии, в науке и технике производятся различные расчеты, предсказываются новые эффекты и явления, с материалистических позиций оцениваются открытия. Если, скажем, новая теория или проект новой установки не противоречат закону сохранения и превращения энергии, то это служит убедительным аргументом в их пользу.

Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2021 Все права на дизайн сайта принадлежат С.Є.А.

Презентация, доклад по физике на тему Нагревание проводников электрическим током. Закон Джоуля- Ленца (8 класс)

Презентация на тему Презентация по физике на тему Нагревание проводников электрическим током. Закон Джоуля- Ленца (8 класс), предмет презентации: Физика. Этот материал в формате pptx (PowerPoint) содержит 18 слайдов, для просмотра воспользуйтесь проигрывателем. Презентацию на заданную тему можно скачать внизу страницы, поделившись ссылкой в социальных сетях! Презентации взяты из открытого доступа или загружены их авторами, администрация сайта не отвечает за достоверность информации в них, все права принадлежат авторам презентаций и могут быть удалены по их требованию.

  • Главная
  • Физика
  • Презентация по физике на тему Нагревание проводников электрическим током. Закон Джоуля- Ленца (8 класс)
Читайте так же:
Тепловое явление тока примеры

Слайды и текст этой презентации

Науки все глубже постигнуть стремись, Познанием вечного жаждой томись. Лишь первых познаний блеснет тебе свет, Узнаешь: предела для знания нет. Фирдоуси

Нагревание проводников электрическим током. Закон Джоуля-Ленца

Шапиров Р.З.
учитель физики
«ГБОУ школа № 7
г. Санкт- Петербург»

объяснить явление нагревания проводников
электрическим током;

2. установить зависимость выделяющейся при этом тепловой энергии от параметров электрической цепи;

3. сформулировать закон Джоуля – Ленца;

4. формировать умение применять этот закон для решения задач.

1. Что называют электрическим током?
(Упорядоченное движение заряженных частиц)
2. Что представляет собой электрический ток в металлах?
(Электрический ток в металлах представляет собой упорядоченное движение свободных электронов)
3. Какие действия тока вам известны?
(Тепловое, электрическое, магнитное, химическое)
4. Какие три величины связывают закон Ома?
(I, U, R; сила тока, напряжение, сопротивление.)
5. Как формулируется закон Ома?
(Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.)
6. Чему равна работа электрического тока на участке цепи?
( А=U*I*t)

(Во всех явления, происходящих в природе, энергия не возникает ни откуда и ни куда бесследно не исчезает. Она только превращается из одного вида в другой.)

Потребители электрического тока

Какой прибор не вписывается в общий ряд? Уберите лишний.
Чем ты руководствовался, делая выбор?
Какое действие электрического тока проявляется в выбранных приборах?
(Тепловое)

Почему же проводники нагреваются?

Рассмотрим на примере движения одного электрона по проводнику

Электрический ток в металлическом проводнике – это упорядоченное движение
электронов. Провод — это кристалл из ионов, поэтому электронам приходится «течь»
между ионами, постоянно наталкиваясь на них. При этом часть кинетической энергии электроны передают ионам, заставляя их колебаться сильнее. Кинетическая энергия
ионов увеличивается, следовательно увеличивается внутренняя энергия проводника,
и следовательно его температура. А это и значит что, проводник нагревается.

В неподвижных металлических проводниках вся работа электрического тока идёт на увеличение его внутренней энергии.

Переход работы тока в теплоту

Электроны направленно движутся
Сталкиваются с ионами
Передают им часть энергии
Ионы колеблются быстрее
Увеличивается внутренняя энергия проводника
Выделяется теплота
По закону сохранения и превращения энергии

Вывод закона Джоуля — Ленца

Единица измерения теплоты в СИ: Джоуль

Гипотеза 1
Количество теплоты зависит от силы тока в цепи

Гипотеза 2 Количество теплоты зависит от сопротивления проводника

От чего может зависеть выделяемая теплота в электрической цепи?

Соблюдайте технику безопасности!

Задания для групп

1. Какое количество теплоты выделяется электрическим чайником за 5 мин., если сопротивление спирали 200 Ом, а сила тока в цепи 3А?

2. Какое количество теплоты выделяется электрическим чайником за 5 минут, если сопротивление спирали 100 Ом, а сила тока в цепи 3А?

При прохождении по спирали электрического чайника ток совершает работу. Вся работа идет на нагревание проводника.

III группа
Зависимость Q от силы тока в цепи:
Электрическая цепь состоящая из источника тока, лампы, ключа, реостата, амперметра, (соединительные провода).

Следовательно количество теплоты зависит не только от силы тока, но и от того, из какого вещества изготовлен проводник. Точнее — от электрического сопротивления проводника (R)

Чтобы проводник нагревался сильнее,
он должен обладать большим удельным сопротивлением

От чего зависит количество теплоты в проводнике с током?

Количество теплоты, которое выделяется при протекании
электрического тока по проводнику, зависит от силы тока
в этом проводнике и от его электрического сопротивления.

Джеймс Прескотт Джоуль (1818-1889 гг.) — английский физик.
Обосновал на опытах закон сохранения энергии.
Установил закон определяющий тепловое действие
электрического тока. Вычислил скорость движения молекул газа и установил её зависимость от температуры.

Читайте так же:
Где расположить выключатель теплого пола

Ленц Эмилий Христианович (1804 – 1865) — русский физик.
Один из основоположников электротехники. С его именем связано открытие закона определяющего тепловые действия тока, и закона, определяющего направление индукционного тока.

Закон определяющий тепловое действие тока.
ЗАКОН ДЖОУЛЯ-ЛЕНЦА

Определить количество теплоты, выделяемое проводником, сопротивление которого 35 Ом, в течении 5 минут. Сила тока в проводнике 5 А.

R=35 Ом
t=5 мин
I=5 А

Q=I2Rt
Q= (5A)2 .35 Ом . 300 с = 262500Дж =
= 262,5 кДж

Ответ: Q=262,5 кДж

Формулой Q = I2Rt удобно пользоваться при расчете количества теплоты, которое выделяется в проводниках при последовательном соединении, так как в этом случае ток во всех проводниках один и тот же (I = I1 = I2).
Поэтому при последовательном соединении нескольких проводников в каждом из них выделяется количество теплоты, пропорциональное сопротивлению.
Т.е. чем больше R, тем больше Q и наоборот.

При параллельном соединении проводников ток в них различен, но напряжение на концах цепи одно и то же (U= U1 = U2). И поэтому расчет количества теплоты при таком соединении удобнее вести по формуле Q = U2t/R.
Эта формула показывает, что при параллельном соединении в каждом проводнике выделяется количество теплоты, обратно пропорциональное сопротивлению,
Т. е. чем больше R, тем меньше Q.

1. В чем проявляется тепловое действие тока?
(В нагревании проводника)
2. Как можно объяснить нагревание проводника с током?
(Движущиеся электроны взаимодействуют с ионами кристаллической решетки и передают им свою энергию)
3. Какие превращения энергии происходят при протекании тока через проводник?
(Электрическая энергия превращается во внутреннюю)
4. Как по закону Джоуля – Ленца рассчитать количество теплоты, выделяемое в проводнике?
(Q=I²Rt)

Рефлексия.
А сейчас оцени свою деятельность на уроке, и
Нарисуй своё настроение в левом верхнем углу оценочного листа.

Своей работой на уроке доволен, чувствовал себя комфортно, настроение после урока хорошее.

Своей работой на уроке не доволен, чувствовал себя не совсем комфортно, настроение после урока плохое.

Состояние на уроке безразличное, урок никак не изменил моего эмоционального состояния и настроения.

Нагревание проводников электрическим током. Закон Джоуля — Ленца

Урок физики в 8 классе

Нагревание проводников электрическим током.

Закон Джоуля — Ленца

Цели урока:

1) узнать причину нагревания проводников при прохождении по ним электрического тока;

2) познакомиться с законом Джоуля – Ленца;

3) научиться решать задачи с использованием закона Джоуля – Ленца.

Просмотр содержимого документа
«Нагревание проводников электрическим током. Закон Джоуля — Ленца»

На открытый урок по физике

Красильников С. В,

Взаимопроверка

«5» 0-1 ошибка

«2» 4 и более ошибок

  • В
  • А
  • А
  • А, Б
  • В

  • А
  • Б
  • Г
  • А, Б, В
  • Г

Цели урока: выяснить

  • почему нагревается проводник при протекании по нему электрического тока.
  • от чего зависит количество теплоты, выделяемое в проводнике.
  • как рассчитывается количество теплоты, выделяемого в проводнике при протекании по нему электрического тока.
  • почему разные проводники нагреваются по-разному.

Нагревание проводников электрическим током. Закон Джоуля-Ленца

Почему же проводники нагреваются?

Рассмотрим на примере движения

одного электрона по проводнику

От чего зависит количество теплоты, выделяемое в проводнике?

I – сила тока, А

R – сопротивление, Ом

Закон сохранения энергии

из закона Ома I=U/R следует U=IR

следовательно Q=IRIt что соответствует формуле Q=I 2 Rt

Q=I 2 Rt

закон Джоуля-Ленца

Какой прибор не вписывается в общий ряд? Уберите лишний.

Чем вы руководствовались, делая выбор?

Какой закон можно применить для расчета количества теплоты выделяемого этими приборами?

Джоуль Джеймс

Ленц Эмилий

Христианович

Решим задачу

Определить количество теплоты, выделяемое проводником, сопротивление которого 35 Ом, в течении 5 минут. Сила тока в проводнике 5 А.

Q=I 2 Rt

Q= (5A) 2 . 35 Ом . 300 с = 262500Дж =

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector