Sibprompost.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Маркировка трансформаторов тока для счетчиков

Маркировка трансформаторов тока для счетчиков

Учет электроэнергии для предприятий

Комплексные решения для малого и среднего бизнеса

Передача почасовых отчетов в энергокомпании

Сдача отчетности в форматах 80020 по регламентам энергокомпаний

Снижение стоимости электроэнергии до 35%

Перевод на выгодную ценовую категорию «Под ключ»

Контроль качества электроэнергии

Фиксация отклонений напряжения и подготовка претензий к энергокомпаниям

Оперативный контроль электропотребления объектов в любое время на своем мобильном устройстве

Электросчётчики с модемами

Комплекты оборудования для быстрого внедрения АСКУЭ

Решения на базе Ваших счётчиков

АСКУЭ с модемом или без него

  • Домой
  • Оборудование
  • Маяк-T301АРТ
  • Carlo Gavazzi EM210
  • EM115
  • ESM
  • Itron ACE6000
  • Landis+Gyr E550
  • Pilot PMAC211
  • Schneider Electric iEM3150
  • Teletec MTX1
  • Teletec MTX3
  • Альфа 1140
  • Альфа 1800
  • Вектор-3 ART
  • Гран-Электро СС-101
  • Гран-Электро СС-301
  • Гран-Электро СС-301N
  • Маяк 301АРТД
  • Маяк-101АТД
  • Маяк-T301АРТ
  • Меркурий 200
  • Меркурий 203.2Т
  • Меркурий 206
  • Меркурий 206F07 Вега-Абсолют
  • Меркурий 206PNF04 Лартех
  • Меркурий 230 AR
  • Меркурий 230 ART
  • Меркурий 233
  • Меркурий 234 ART
  • Меркурий 234 ARTM
  • Меркурий 234 ARTM F04 Лартех
  • Меркурий 236
  • Милур 107
  • Милур 307
  • Миртек-12-ру
  • Миртек-32-РУ
  • Нева МТ 113
  • Нева МТ 114 AR2S
  • Нева МТ 114 AS
  • Нева МТ 123
  • Нева МТ 124 AR2S
  • Нева МТ 124 AS
  • Нева МТ 313
  • Нева МТ 314
  • Нева МТ 323
  • Нева МТ 324
  • ПСЧ-3ТА.07
  • ПСЧ-4ТМ.05М
  • ПСЧ-4ТМ.05МД
  • ПСЧ-4ТМ.05МДТ
  • ПСЧ-4ТМ.05МК
  • ПСЧ-4ТМ.05МКТ
  • ПСЧ-4ТМ.05МН
  • ПСЧ-4ТМ.05МНТ
  • РиМ384
  • СЭБ-1ТМ.02М
  • СЭБ-1ТМ.03Т
  • СЭО6005
  • СЭТ-4ТМ.02М
  • СЭТ-4ТМ.02МТ
  • СЭТ-4ТМ.03М
  • СЭТ-4ТМ.03МТ
  • СЭТ7007
  • ТЕ1000
  • ТЕ2000
  • ТЕ3000
  • ЦЭ2726А
  • ЦЭ2726А Вега-Абсолют
  • ЦЭ2727А
  • ЦЭ2727А Вега-Абсолют
  • ЭМИС-ЭЛЕКТРА 971
  • ЭМИС-ЭЛЕКТРА 976
  • Энергомера CE102
  • Энергомера CE102-R5.1
  • Энергомера CE102M
  • Энергомера CE201
  • Энергомера CE208-R5 IEC
  • Энергомера CE208-S7 IEC
  • Энергомера CE301
  • Энергомера CE303
  • Энергомера CE306
  • Энергомера CE308 S31 IEC
  • Энергомера CE308 S31 СПОДЭС
  • Энергомера CE318BY R32
  • Энергомера CE318BY S35
  • Энергомера CE318BY S39
  • Энергомера ЦЭ6850М
  • GSM/GPRS-коммуникатор PGC.02
  • MOXA NPort 5130
  • MOXA NPort 5150
  • PLC-модем M-2.01
  • PROMODEM AnCom STF
  • PROMODEM WiFi-232-AC
  • PROMODEM WiFi-232-DC24G
  • PROMODEM WiFi-485-AC
  • PROMODEM WiFi-485-DC24G
  • TELEOFIS ER108-L4U
  • TELEOFIS ER108-L4U V2
  • TELEOFIS WRX400-R2
  • TELEOFIS WRX708-L4
  • TELEOFIS WRX768-L4
  • TELEOFIS WRX768-L4U
  • TELEOFIS WRX768-R4
  • TELEOFIS WRX768-R6U
  • TELEOFIS WRX908-L4
  • TELEOFIS WRX908-R4
  • TELEOFIS WRX968-L4U
  • iRZ ATM2-232
  • iRZ ATM2-485
  • iRZ ATM21.А/ATM21.B
  • iRZ MC52iT
  • iRZ TG21.A/B
  • Вега БС-1
  • Вега БС-1.2
  • Вега БС-2
  • Вега БС-2.2
  • Коммуникатор GSM С-1.02
  • Меркурий 228 GSM-шлюз
  • ОВЕН ПМ01
  • Терминал iRZ TE12
  • CE805M (B,E)
  • CE805М EXT1
  • GSM-шлюз RG106
  • GSM-шлюз RG107(ZigBee)
  • Концентратор Меркурий 225.21
  • Концентратор данных ЭМИС-СИСТЕМА 951
  • МИЛУР IC
  • УСПД РИМ 099.02
  • УСПД УМ-31
  • УСПД Энергомера 164-01Б
  • Универсальний комунікатор KI-UC-BBHZC-003
  • ВКТ-7
  • Вега СИ-11
  • Вега СИ-12
  • Вега СИ-13-232
  • Вега СИ-13-485
  • ПРЭМ
  • Пульсар 10М
  • Пульсар 16М
  • Пульсар 2М
  • СВК15-3-2 с модулем УМКа400
  • СВХЭ/СГВЭ-15 с модулем Вега-Абсолют

Маяк-T301АРТ

АО «ННПО им. М.В. Фрунзе»

Счетчики предназначены для учета активной и реактивной энергии прямого и обратного направления в трехпроводных и четырехпроводных сетях переменного тока частотой 50 Гц, дифференцированного как по времени суток, так и по уровню потребляемой электроэнергии и мощности.
Счетчики могут использоваться автономно или в составе автоматизированных систем коммерческого учета электроэнергии (АСКУЭ) с заранее установленной программой и возможностью установки (коррекции) соответствующего тарифного расписания

  • Текущие показания
  • Показания на начало суток
  • Показания на начало месяца
  • Профиль мощности
  • Параметры электроэнергии
  • Параметры качества электроэнергии
  • Корректировка времени
  • Управление реле

Виды связи

Технические особенности

  • Энергонезависимая память.
  • Тарифное расписание на четыре тарифа по восьми типам дней в двенадцати сезонах.
  • Возможность задания для электросчетчика до 32-х исключительных дней (праздничных и перенесенных).
  • Жидкокристаллический индикатор (ЖКИ) с подсветкой.
  • Равноприоритетные независимые интерфейсы связи оптопорт и RS-485, которые поддерживают ASCII символьный протокол. Возможно одновременное подключение к RS-485 и оптопорту.
  • Два конфигурируемых изолированных импульсных выхода.
  • В качестве датчиков тока используются токовые трансформаторы.
  • Встроенные часы реального времени с высокой точностью хода (значительно лучше 0,4 с/сутки).
  • Формирование сигнала управления нагрузкой по различным программируемым критериям.
  • Две электронные пломбы.
  • Повышенная надежность от несанкционированного доступа (три уровня доступа — доступ к параметрам и данным со стороны интерфейсов связи защищен паролями на чтение, программирование и управление нагрузкой по команде оператора). Кроме парольной защиты предусмотрены возможности фиксации даты и времени последнего отключения счетчика от сети питания, последнего включения электросчетчика.
Читайте так же:
Щит уличный для однофазных счетчиков

Функциональные возможности

Тарификация и архивы учтенной электроэнергии

Счетчики ведут многотарифный учет электроэнергии в четырех тарифных зонах, по восьми типам дней в двенадцати сезонах. В электросчетчиках задается начало первой и второй зоны, а третья и четвёртая зоны задаются началом и продолжительностью. Тарификатор счетчиков использует расписание исключительных дней (праздничных и перенесенных).

Счетчики ведут следующие архивы тарифицированной учтенной энергии:

  • значений учтенной активной и реактивной электроэнергии нарастающим итогом с момента изготовления по всем тарифам;
  • значений учтенной активной и реактивной электроэнергии на начало каждого месяца по всем тарифам в течение двадцати четырех месяцев;
  • значений учтенной активной и реактивной электроэнергии, а также максимальной активной и реактивной мощности каждого получаса месяца в течение двух месяцев.
Журналы

Счетчики ведут журналы событий, в которых фиксируются времена начала/окончания следующих событий:

  • время включения/отключения питания (32 события);
  • время открытия и закрытия канала на запись (32 события);
  • время и дата до и после коррекции (32 события);
  • время и дата открытия и закрытия крышки клеммной колодки (32 события);
  • время и дата открытия и закрытия крышки электросчетчика (32 события).
Профили мощности нагрузки

Счетчики ведут четырехканальный профиль мощности со временем интегрирования 30 минут для активной и реактивной электроэнергии, максимальных активной и реактивной мощности.

Импульсные выходы

В счетчиках функционируют два изолированных импульсных выхода — активный и реактивный, которые могут конфигурироваться для формирования импульсов телеметрии или поверки. Активный импульсный выход может дополнительно конфигурироваться для формирования:

  • сигнала индикации превышения программируемого порога мощности;
  • сигнала контроля точности хода встроенных часов (канал 0);
  • сигнала управления нагрузкой по программируемым критериям.
Устройство индикации

Счетчики электроэнергии имеют жидкокристаллический индикатор с подсветкой для отображения учтенной электроэнергии и три кнопки управления режимами индикации. Жидкокристаллический индикатор обеспечивает циклическое отображение следующей информации:

  • текущего значения энергии по каждому тарифу;
  • суммарного значения накопленной энергии;
  • текущего времени;
  • текущей даты;
  • текущей измеряемой активной мощности;
  • суммарного значения активной мощности;
  • текущей измеряемой реактивной мощности;
  • суммарного значения реактивной мощности;
  • фазного напряжения;
  • фазного тока;
  • частоты;
  • потребляемой активной энергии в текущем получасе;
  • потребляемой реактивной энергии в текущем получасе.
Интерфейсы связи

Счетчики, в зависимости от модификации, имеют равноприоритетные независимые интерфейсы связи: оптический интерфейс и интерфейс RS-485, которые поддерживают ASCII символьный протокол. Счетчики обеспечивают регистрацию, хранение и считывание по интерфейсу:

  • значения учтенной активной и реактивной электроэнергии нарастающим итогом с момента изготовления по всем тарифам;
  • значения учтенной активной и реактивной электроэнергии на начало каждого месяца по всем тарифам в течение двадцати четырех месяцев;
  • значения учтенной активной и реактивной электроэнергии, а также максимальной активной и реактивной мощности каждого получаса месяца в течение двух месяцев;
  • времени включения/отключения питания (32 события);
  • времени открытия и закрытия канала на запись (32 события);
  • времени и даты до и после коррекции (32 события);
  • времени и даты открытия и закрытия крышки клеммной колодки (32 события);
  • времени и даты открытия и закрытия крышки корпуса электросчетчика (32 события).

Счетчики обеспечивают регистрацию значения мгновенной мощности нагрузки.
Счетчики имеют возможность считывания и перепрограммирования через интерфейс связи следующих параметров:

  • даты и времени;
  • категории потребителя;
  • расписания исключительных дней;
  • годового тарифного расписания (на каждый день недели и исключительный день месяца);
  • лимита мощности и месячного лимита электроэнергии;
  • режимов работы импульсных выходов электросчетчика:
    • поверка/телеметрия — для поверки счетчика или для контроля энергопотребления;
    • включение, отключение, контроль;
    • калибровка – для проверки точности хода часов;
  • режима индикации и периода индикации в диапазоне от 6 до 60 с;
  • разрешения однотарифного режима работы.

Счетчики электроэнергии имеют возможность перепрограммирования через интерфейс связи группового пароля, индивидуального пароля, адреса, пароля на запись.

Замена трансформаторов тока

Измерительные трансформаторы тока предназначены для снижения (трансформации) текущих значений тока в электроустановке до значений, воспринимаемых устройством учета — счетчиком электрической энергии. Как у любого измерительного прибора у трансформатора тока есть свой межповерочный интервал, по прошествии которого уже нельзя быть уверенным в точности и правдивости его показаний. В этот момент у любого Потребителя возникает вопрос: «Поверять или заменять трансформаторы тока?» .

Читайте так же:
Электросчетчик милур 104 производитель

В настоящий момент стоимость поверки 1 трансформатора тока в Москве колеблется от 2500 до 3500 рублей за штуку. Такая цена проведения поверки обусловлена высокой стоимостью комплекса оборудования для поверки ТТ, а также повышенной сложностью выполнения самих поверочных процедур. Именно вследствие дороговизны поверки все большую популярность приобретает услуга по замене отработавших свой ресурс трансформаторов тока на аналогичные текущего года выпуска . Экономия при этом может составлять до 2000 рублей с каждого трансформатора.

Этапы замены трансформаторов тока

Следует заранее понимать, что процедура замены ИТТ подразумевает отключение всей электроустановки на время её проведения. В зависимости от сложности выполнения работ, стесненности условий и т.п., время проведения работ по замене трансформаторов может составлять от 40 минут до нескольких часов.

Что требуется при первом обращении

Если Вы решили заменять трансформаторы тока, Вам потребуется наличие следующей информации:

  1. Фотографии щита учета, на которых должны быть четко видны сами трансформаторы, способ их крепления и подключения, а также их заводская маркировка.
  2. Адрес объекта, его функциональное назначение (школа, поликлиника, офис, склад и т.п.).
  3. Ваши пожелания по дате отключения объекта.
  4. Карточка сведений о контрагенте для выставления счета за услуги.

Все эти данные Вы можете направить на электронный адрес tt@stroi-tk.ru, после получения письма наши менеджеры свяжутся с Вами для уточнения условий по Вашей заявке.

Процедура замены

Процедура замены измерительных трансформаторов тока в шкафах учета электроустановки Потребителя включает в себя несколько технических и организационных операций:

  1. Согласование с инспектором Энергосбыта даты и времени отключения объекта и распломбировки заменяемых трансформаторов тока;
  2. Отключение электропитания объекта, вывешивание знаков «Не включать, работают люди!»;
  3. Маркировка проводов и кабелей первичных и вторичных цепей;
  4. Демонтаж отработавших свой ресурс измерительных трансформаторов тока;
  5. Монтаж и подключение новых измерительных трансформаторов тока;
  6. Визуальный и инструментальный контроль правильности подключения ТТ;
  7. Включение электропитания объекта, проверка работы трансформаторов в рабочем режиме;
  8. Составление Акта замены трансформатора тока;
  9. Оповещение инспектора Энергосбыта о необходимости опломбировки нового оборудования;
  10. Подписание Акта сдачи-приемки выполненных работ.

Стоимость замены трансформаторов тока

Как мы уже выяснили ранее, замена трансформаторов тока на новые позволяет существенно сэкономить денежные средства, при этом работа Вашей электроустановки прерывается на очень короткий отрезок времени, а после замены Вы абсолютно легально продолжаете её эксплуатацию.

Цена замены — от 1500 рублей за один трансформатор. Позвоните и убедитесь сами.

Цена услуги по замене трансформаторов тока складывается из нескольких составляющих, среди которых:

  • стоимость самих трансформаторов, закупочные расходы;
  • стоимость электромонтажных работ по демонтажу и монтажу трансформаторов;
  • наценка за выполнение работ во внеурочное время, выходные или праздничные дни.

При одновременном заказе замены от 10 штук предоставляются индивидуальные скидки и бонусы.

Ориентировочные сроки

Обычно с момента оплаты счета до момента приезда наших специалистов для замены трансформаторов проходит 2-3 рабочих дня. Это обусловлено необходимостью закупки трансформаторов, максимально приближенных по техническим характеристикам, посадочным местам и размерам к существующим в Вашей электроустановке.

Если Ваш заказ является более срочным — обращайтесь и мы обязательно что-нибудь придумаем, ведь наша задача — максимально облегчить жизнь нашего Заказчика.

Государственным Заказчикам

Для удобства Государственных Заказчиков, будь то школы, детские сады, учреждения здравоохранения или культуры г. Москвы, на Портале Поставщиков выставлена оферта на замену ТТ с фиксированной ценой. Задача Заказчика — только разместить проект Контракта на неё, указав необходимое количество измерительных трансформаторов, после чего Контракт в электронном виде подписывается Сторонами и приобретает статус «Заключен».

С этого момента до непосредственного начала работ на объекте (или объектах) обычно проходит 2-3 дня — время для согласования графика выполнения работ, списков специалистов для доступа на объекты и т.п. При этом, в целях ускорения выполнения Государственного Контракта, число одновременно работающих бригад может быть до 10.

Посмотреть отзывы Государственных Заказчиков >>>.

Наши преимущества

Выбрав нас в качестве исполнителя электромонтажных работ Вы получаете:

  1. Грамотных специалистов в области электроснабжения — средний стаж работы по специальности наших специалистов — 12,7 лет .
  2. Оперативность выполнения заказа — сегодня оплатили, а завтра мы уже можем быть у Вас.
  3. Наши трансформаторы тока имеют межповерочный интервал от 8 до 12 лет .
  4. Четкое и своевременное оформление всей необходимой технической и бухгалтерской документации.
Читайте так же:
Электросчетчик для квартиры 220

Маркировка трансформаторов тока для счетчиков

Классификация и расшифровка обозначений трансформатора тока

Трансформатор тока — трансформатор, первичная обмотка которого подключена к источнику тока, а вторичная обмотка замыкается на измерительные или защитные приборы, имеющие малые внутренние сопротивления.

Измерительный трансформатор тока — трансформатор, предназначенный для преобразования тока до значения, удобного для измерения. Первичная обмотка трансформатора тока включается последовательно в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, пропорционален току, протекающему в его первичной обмотке.

Трансформаторы тока широко используются для измерения электрического тока и в устройствах релейной защиты электроэнергетических систем, в связи с чем на них накладываются высокие требования по точности. Трансформаторы тока обеспечивают безопасность измерений, изолируя измерительные цепи от первичной цепи с высоким напряжением, часто составляющим сотни киловольт.

К трансформаторам тока предъявляются высокие требования по точности. Как правило, трансформатор тока выполняют с двумя и более группами вторичных обмоток: одна используется для подключения устройств защиты, другая, более точная — для подключения средств учёта и измерения (например, электрических счётчиков).

Классификация трансформаторов тока

Трансформаторы тока классифицируются по различным признакам:

1. По назначению трансформаторы тока можно разделить на измерительные, защитные, промежуточные (для включения измерительных приборов в токовые цепи релейной защиты, для выравнивания токов в схемах дифференциальных защит и т. д.) и лабораторные (высокой точности, а также со многими коэффициентами трансформации).

2. По роду установки различают трансформаторы тока: а) для наружной установки (в открытых распределительных устройствах); б) для закрытой установки; в) встроенные в электрические аппараты и машины: выключатели, трансформаторы, генераторы и т. д.; г) накладные — надевающиеся сверху на проходной изолятор (например, на высоковольтный ввод силового трансформатора); д) переносные (для контрольных измерений и лабораторных испытаний).

3. По конструкции первичной обмотки трансформаторы тока делятся на:

а) многовитковые (катушечные, с петлевой обмоткой и с восьмерочной обмоткой); б) одновитковые (стержневые); в) шинные.

4. По способу установки трансформаторы тока для закрытой и наружной установки разделяются на:

а) проходные; б) опорные.

5. По выполнению изоляции трансформаторы тока можно разбить на группы: а) с сухой изоляцией (фарфор, бакелит, литая эпоксидная изоляция и т. д.); б) с бумажно-масляной изоляцией и с конденсаторной бумажно-масляной изоляцией; в) газонаполненные (элегаз); г) с заливкой компаундом.

6. По числу ступеней трансформации имеются трансформаторы тока:

а) одноступенчатые; б) двухступенчатые (каскадные).

7. По рабочему напряжению различают трансформаторы:

а) на номинальное напряжение свыше 1000 В; б) на номинальное напряжение до 1000 В.

Параметры трансформаторов тока

Важными параметрами трансформаторов тока являются коэффициент трансформации и класс точности.

Коэффициент трансформации

Коэффициент трансформации трансформатора тока определяет номинал измерения тока и означает при каком первичном токе во вторичной цепи будет протекать определённый стандартный ток (чаще всего это 5 А, редко 1 А). Первичные токи трансформаторов тока определяются из ряда стандартизированных номинальных токов. Коэффициент трансформации трансформатора тока обычно записывается в виде отношения номинального первичного тока ко номинальному вторичному в виде дроби, например: 75/5 (при протекании в первичной обмотке тока 75 А — 5А во вторичной обмотке, замкнутой на измерительные элементы) или 1000/1 (при протекании в первичной цепи 1000 А, во вторичных цепях будет протекать ток 1 А. Иногда трансформаторы тока могут иметь переменный коэффициент трансформации, что возможно пересоединением первичных обмоток из параллельного в последовательное соединения (например такое решение применяется в трансформаторах тока ТФЗМ — 110) либо наличием отводов на первичной или вторичной обмоток (последнее применяется в лабораторных трансформаторах тока типа УТТ) или же изменением количества витков первичного провода, пропускаемого в окно трансформаторов тока без собственной первичной обмотки (трансформаторы тока УТТ).

Класс точности

Для определения класса точности трансформатора тока вводятся понятия:

  • погрешности по току ΔI = I2 — I1’, где I2- действительный вторичный ток, I1’ =I1/n — приведённый первичный ток, I1 — первичный ток , n — коэффициент трансформатора тока;
  • погрешности по углу δ = α1 — α2, где α1 — теоретический угол сдвига фаз между первичным и вторичным током α1 = 180°,α2 — действительный угол между первичным и вторичным током;
  • относительной полной погрешности ε%=(|I1’-I2|)/|I1’|, где |I1’| — модуль комплексного приведённого тока.
Читайте так же:
Счетчики электрические однофазные со 505

Погрешности по току и углу объясняются действием тока намагничивания. Для промышленных трансформаторов тока устанавливаются следующие классы точности : 0,1 0,5; 1; 3, 10Р. Согласно ГОСТ 7746 — 2001 класс точности соответствует погрешность по току ΔI, погрешность по углу равна: ±40’ (класс 0,5); ±80’ (класс 1), для классов 3 и 10Р угол не нормируется. При этом трансформатор тока может быть в классе точности только при сопротивлении во вторичных цепи не более установленного и тока в первичной цепи от 0,05 до 1,2 номинального тока трансформатора. Для трансформаторов тока с добавлением сзади класса точности литеры S (например 0,5S) означает, что трансформатор будет находится в классе точности от О,01 до 1,2 номинального тока. Класс 10Р (по старому ГОСТ Д) предназначен для питания цепей защиты и нормируется по относительной полной погрешности, которая не должна превышать 10% при максимальном токе к.з. и заданном сопротивления вторичной цепи. Согласно международному стандарту МЭК (IEС 60044-01) трансформаторы тока должны находится в классе точности при протекании по первичной его обмотке тока 0,2 ÷ 200% номинального, что обычно достигается изготовлением сердечника из нанокристаллических сплавов.

Обозначения трансформаторов тока

Отечественные трансформаторы тока имеют следующее обозначения:

  • первая буква в обозначении «Т» — трансформатор тока
  • вторая буква — разновидность конструкции: «П» — проходной, «О» — опорный, «Ш» -шинный, «Ф» — в фарфоровой покрышке
  • третья буква — материал изоляции: «М» — масляная, «Л» — литая изоляция

Далее через тире пишется класс изоляции трансформатора тока, климатическое исполнение и категория установки Например: ТПЛ — 10УХЛ4 100/5А: «трансформатор тока проходной с литой изоляцией с классом изоляции 10 кВ, для умеренного и холодного климата, категории 4 с коэффициентом трансформации 100/5» (читается как «сто на пять»).

Трансформаторы тока для электросчетчиков — характеристики и варианты подключения

При эксплуатации энергетических систем разного типа часто возникают ситуации, требующие осуществить перевод электрических величин в аналоги с определенными соотношениями.

Трансформаторы тока для электросчетчиков позволяют значительно расширить стандартные пределы измерений приборами учёта.

Номинальное напряжение трансформатора тока

Одним из основных параметров, относящихся к трансформаторам тока для электрических счётчиков, является уровень номинального напряжения, который указывается в паспорте на прибор. Номинальные значения напряжения варьируется от 0.66кВт до 1150кВт:

  • 0,66 кВт;
  • 6.0 кВт;
  • 10 кВт;
  • 15 кВт;
  • 20 кВт;
  • 24 кВт;
  • 27 кВт;
  • 35 кВт;
  • 110 кВт;
  • 150 кВт;
  • 220 кВт;
  • 330 кВт;
  • 500 кВт;
  • 750 кВт;
  • 1150 кВт.

Номинальные значения уровня первичного тока на электрической цепи обозначают токовые показатели на первичной трансформаторной обмотке.

Параметры вторичного номинального тока — это стандартные показатели на обмотке вторичного типа. Определение таких токовых потоков осуществляется по номинальным значениям мощности и напряжения. При этом первичный тип обмотки подключается к источнику электрической энергии, а замыкание вторичной обмотки приходится на устройства измерительного или защитного типа, с низкими показателями внутреннего сопротивления.

Класс точности

При правильном выборе токового трансформаторного устройства у потребителя появляется реальная возможность подключать измерительные и защитные приборы к высоковольтным электрическим линиям. Уровень класса точности – одна из наиважнейших характеристик, указывающих на измерительную погрешность, которая не должна быть выше, чем параметры по нормативным документам.

Класс точности определяется несколькими основными факторами, включая погрешности по току и углу, а также показатели относительной полной погрешности. Первые два понятия всегда характеризуются током намагничивания.

Принцип работы трансформатора тока

В приборах промышленного назначения используется несколько классов точности:

  • 0.1
  • 0.5
  • 1.0
  • 3.0
  • 10Р

В соответствии с действующим на сегодняшний день в нашей стране ГОСТом, класс точности должен быть ориентирован на токовые погрешности, поэтому для показателей в ±40′ предполагается класс 0.5, а для ±80′ – класс 1.0. Следует отметить, что классы 3.0 и 10Р по существующим правилам не нормируются.

Читайте так же:
Внутреннее устройство электросчетчика нева 101

Наличие в маркировке буквенного обозначения «S» свидетельствует о классе точности в пределах 0.01-1.2. Класс 10Р используется в защитных цепях, а нормирование осуществляется в соответствии с относительной полной погрешностью не более десяти процентов. Допускается применение приборов с классом точности 1.0, но только если электрический счетчик обладает классом точности в две единицы.

Для учёта в коммерческой сфере уровень класса точности должен составлять 0.5S, а для учёта технического – 1.0S.

Номинальный ток вторичной обмотки

Строение вторичной обмотки у токовых трансформаторов, которые предназначены для напряжения не более тысячи вольт, имеет некоторые отличия. На высоковольтном приборе устанавливается как минимум две вторичные обмотки.

Принцип их действия аналогичен функционированию повышающего трансформатора. Вне зависимости от уровня мощности первичной обмотки, номинальные показатели тока на вторичной обмотке, как правило, стабильно составляют 5А.

Конструкция трансформатора тока

Номинальные значения вторичного тока «I2н» указываются в таблице прилагаемого к устройству паспорта. Номинальные токи на вторичной обмотке равны единице или 5А, но вторые показатели допускаются исключительно в устройствах с первичными токами, не превышающими 4000А.

Однако, допускается также изготовление современных токовых трансформаторных приборов по индивидуальным заказам с номинальными показателями токов вторичного типа на уровне 2.0А или 2,5А.

Существуют нормы и стандарты, по которым срок эксплуатации электросчетчика ограничен определенным периодом.

Инструкцию по монтажу однофазного счетчика смотрите здесь.

Варианты установки индукционного счетчика подробно рассмотрены в этом материале.

Номинальный ток первичной обмотки

В зависимости от конструкционных особенностей первичной обмотки, трансформаторы тока могут быть не только многовитковыми, но также одновитковыми и шинными.

На сегодняшний день наибольшее распространение получил второй вариант исполнения устройства.

Одновитковые модели токовых трансформаторов представлены разновидностями, не имеющими индивидуальную первичную обмотку или с наличием индивидуальной обмотки первичного типа.

Для одновитковых моделей без собственной первичной обмотки характерно встроенное, шинное или разъемное выполнение. Первичный токовый уровень, в этом случае, всегда определяется в соответствии со стандартизированными номинальными токами.

Токи номинальные первичного типа «I1н» указываются в паспортных табличных данных трансформаторного прибора, и определяют стандартные коэффициенты трансформации в виде соотношения номинальных токовых показателей на двух видах обмотки устройства.

Подбирать коэффициент трансформации необходимо в строгом соответствии с расчетной нагрузкой, а также с обязательным учетом возможности функционирования установленного устройства в аварийных ситуациях. Токовый номинал на первичной обмотке не может быть меньше, чем максимальные рабочие значения тока эксплуатируемой электрической установки: I2ном.тт>Imах.эу.

Схема подключения

Рассмотрим, как подключить трансформатор тока. В зависимости от конструктивных особенностей трансформатора тока для электрических счётчиков различается несколько видов таких приборов:

  • токовые трансформаторы, предназначенные для наружного монтажа в ОРУ;
  • токовые трансформаторы, предназначенные для закрытого монтажа распределительных устройств;
  • токовые трансформаторы встроенного типа;
  • токовые трансформаторы, предназначенные для монтажа на изоляторы проходного типа;
  • токовые трансформаторы в переносном или мобильном исполнении.

Токовыми трансформаторами обеспечивается полноценная изоляция эксплуатируемых силовых электрических цепей. Измерительное устройство в быту – гарантия безопасной работы, поэтому специалисты рекомендуют использовать так называемую гальваническую развязку. К недостаткам этого способа установки можно отнести достаточно большое количество электропроводов.

Подключение счетчика электрической энергии через токовые трансформаторы осуществляется посредством десятижильных кабелей. В конструкции применяются раздельные цепи, как на ток, так и напряжение. Стандартная схема установки предполагает обязательное подсоединение трех элементов электросчетчика с соблюдением правил полярности при прямом чередовании фаз относительно «U».

Схема подключения электросчетчика через трансформаторы тока

В процессе самостоятельного монтажа измерительных приборов электрической энергии, токовые трансформаторы подключаются к цепным разрывам при помощи специальных, очень удобных в применении зажимов «Л-1» и «Л-2».

Электротехнический шкаф защищает счетчик от пыли, влаги, грязи. Щиток электрический под счетчик и автоматы — критерии выбора рассмотрим далее.

Знаете ли вы, что такое коэффициент трансформации счетчика электроэнергии? Читайте эту информацию, если интересно.

Видео на тему

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector