Sibprompost.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выбор трансформаторов тока в цепях учёта

Выбор трансформаторов тока в цепях учёта

Главная > Контрольная работа >Физика

Часть 1. Проверка правильности выбора трансформатора тока

Мощность трансформатора, кВА

Мощность нагрузки изменяется от указанной до номинальной

Коэффициент трансформации тр-ра тока

Часть 2 . Расчет нагрузки трансформатора тока

Междуфазная нагрузка, ВА

Длина кабеля до трансформатора напряжения, м

Сечение кабеля, мм 2

Часть 3. Расчет экономии электроэнергии, затрачиваемой на освещение

1. Проверка правильности выбора трансформатора тока

Проверить правильно ли выбраны трансформаторы тока при выполнении учета электроэнергии на силовом трансформаторе.

Мощность трансформатора, кВА

Мощность нагрузки изменяется от указанной до номинальной

Коэффициент трансформации тр-ра тока

Задача 1. Необходимо выполнить учет электроэнергии на силовом трансформаторе 250 кВА, 10/0,4 кВ . Мощность нагрузки трансформатора изменяется от 70 кВА до номинальной. Ячейка трансформатора оборудована трансформаторами тока с К 1 = 75/5 (коэффициент трансформации в виде отношения номинальных первичного и вторичного токов). Требуется проверить их пригодность (правильно ли выбраны ТТ).

Номинальный первичный ток трансформатора по стороне 10 кВ

Ток минимальной нагрузки

Вторичный ток при номинальной нагрузке

Согласно ПУЭ при максимальной нагрузке присоединения вторичный ток должен составлять не менее 40% от номинального тока счетчика. Номинальный вторичный ток равен 5А.

0,96А-х% 5/100=0,96/х 5*х=0,96*100 х=96/5 х=19,2

Отношение вторичного тока к номинальному в процентах составит:

(0,96/5)∙100%= 19,25 – условие не выполняется

Вторичный ток при минимальной нагрузке

Согласно ПУЭ при минимальной нагрузке присоединения вторичный ток должен составлять не менее 5%. от номинального тока счетчика. Номинальный вторичный ток равен 5А.

Отношение вторичного тока к номинальному в процентах составит:

(0,27/5))∙100%= 5,39>5% – условие выполняется, но можно лучше

Таким образом, трансформатор тока нужно заменить трансформатором тока 30/5.

Тогда вторичный ток при номинальной нагрузке

А отношение вторичного тока к номинальному в процентах составит:

(2,405/5)∙100%=48,1> 40% – условие выполняется

Вторичный ток при минимальной нагрузке

Отношение вторичного тока к номинальному в процентах составит:

(0,67/5))∙100%=0,135*100=13,5 >5% – условие выполняется

Вывод: Трансформатор тока представляет собой вспомогательный аппарат, в котором вторичный ток практически пропорционален первичному току и предназначенный для включения измерительных приборов и реле в электрические цепи переменного тока. Трансформаторы тока служат для преобразования тока любого значения и напряжения в ток, удобный для измерения стандартными приборами (5 А), питания токовых обмоток реле, отключающих устройств, а также для изолирования приборов и обслуживающего их персонала от высокого напряжения.

Обычно трансформатор тока выбирается с условием, чтобы его вторичный ток не превышал 110% номинального. С другой стороны, трансформаторы тока, выбранные с завышенными коэффициентами трансформации с учетом тока КЗ, при малых вторичных токах имеют повышенные погрешности. Согласно ПУЭ при максимальной нагрузке присоединения вторичный ток должен составлять не менее 40% от номинального тока счетчика, а при минимальной – не менее 5%.

Таким образом трансформатор тока был выбран неправильно. Так как номинальный ток вторичной обмотке указан в паспортной табличке и равен 5А, то обратимся к принятой для ТТ шкале номинальных первичных токов: 1,5,10,15,20,30,40,50,75 и т.д. Выбрав вторичный ток = 30А получаем трансформатор с коэффициентом трансформации К=30/5

2. Расчет нагрузки трансформатора тока

Определить нагрузку на трансформатор напряжения и падение напряжения в кабеле. Сравнить с допустимыми значениями.

Междуфазная нагрузка, ВА

Длина кабеля до трансформатора напряжения, м

Сечение кабеля, мм 2

Для трехфазного трансформатора напряжения определяется мощность нагрузки S ТН каждой из фаз по формуле

где — наибольшая и наименьшая мощности междуфазной нагрузки

Из трех вычисленных таким образом нагрузок берется наибольшая S ТНmax , и проверяется неравенство .

Наиболее загружена фаза с . Мощность ее нагрузки

Расчетная нагрузка трансформатора напряжения ,

т.е. не превышает допустимую.

Сопротивление соединительных проводов определяется по формуле

где ℓ – длина провода между трансформатором тока и счетчиком, м; γ – удельная проводимость; для меди γ = 53 м/(Ом·мм 2 ), для алюминия γ = 32 м/(Ом·мм 2 ); s- сечение провода, мм 2 .В токовых цепях сечение медных проводов должно быть не менее 2,5 мм 2 , алюминиевых – не менее 4 мм 2 .

Сопротивление алюминиевого провода

Определяется ток нагрузки I ТН фазы c:

Ток нагрузки в фазе с

Согласно ПУЭ сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков выбираются таким образом, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения. При номинальном напряжении 100 В потеря напряжения в вольтах численно совпадает с потерей напряжения в процентах.

Читайте так же:
Навесной бокс для электросчетчика

Определяется падение линейного напряжения ΔU для трехфазного трансформатора напряжения:

Падение напряжения в соединительных проводах

Вывод: Измерительные трансформаторы напряжения – это промежуточные трансформаторы, через которые включаются измерительные приборы при высоких напряжениях. Благодаря этому измерительные приборы оказываются изолированными от сети, что делает возможным применение стандартных приборов (с переградуированием их шкалы) и тем самым расширяет пределы измеряемых напряжений. Нагрузка на трансформатор и падение напряжения в кабеле не превышают допустимые.

3. Расчет экономии электроэнергии, затрачиваемой на освещение

Производственный цех имеет верхнее освещение. Источник света – N=285 светильников, каждый из которых имеет одну лампу накаливания.

Мощность лампы накаливания .

Исследование освещения показало, что M=54 светильников с натриевыми лампами высокого давления мощностью обеспечат тот же уровень освещенности в цехе.

Срок службы ламп накаливания (ЛН) – 1000 часов.

Срок службы натриевых ламп высокого давления (НЛ) – 10000 часов.

Время работы светильников в год часов.

Расчет включает следующие этапы:

Расчет капитальных затрат.

Расходы на электроэнергию.

Расчет срока окупаемости.

Капитальные затраты (КЗ)

1. Количество светильников

2. Стоимость светильников, включая управления (за ед., у. е.)

3. Стоимость замены ламп (за ед., у. е.)

4. Стоимость установки светильников (за ед., у. е.)

54*(180+48+ 120)=54*348= 18792

КЗ=M (Расход по статье 2+расход по статье 3+расход по статье 4))

Расходы на электроэнергию

1. Количество светильников

2. Потребление электроэнергии каждой лампой, Вт

3. Часы работы, час/год(Тр)

Электроэнергия, потребляемая лампами накаливания за год, кВтч/год:

285*500Вт*3000 час/год=427500000Вт∙ч/год=427500 кВт∙ч/год

54*400Вт*3000=64800000 Вт∙ч/год=64800 кВт∙ч/год

4. Стоимость эл. энергии за 1 кВтч, у. е. (Т)

ИТОГО. Общие расходы на электроэнергию за год. где Т – тариф за 1 кВтч.

1. Количество светильников

2. Стоимость очистки светильников, у. е.

3. Количество раз чистки светильников в год

4. Общая стоимость чистки в год (статья расхода 1*статья расхода 2* статья расхода 3)

5. Стоимость замены ламп за ед.

6. Стоимость замены всех ламп за год ((статья 5 * / срок службы лампы) * количество светильников)

7. Эксплуатационные расходы за год (статья 6+статья 4).

8. Общие эксплуатационные расходы (ОЭР) определяются как сумма эксплуатационных расходов и расходов на электроэнергию

Расчет срока окупаемости.

Экономия за год, у. е.

Э=ОЭР ЛН – ОЭР НЛ= 32062,50 -4071,60=27990,90

Срок окупаемости, лет.

54*(180+48+ 120)=54*348= 18792

=46170/27990,90=1,65=165/100=(165*12)/(100*12)=1980/1200=19,8/12= 12 мес+7,8 мес= 1год8 мес – для ламп накаливания

= 18792/27990,90=0,67=67/100=(67*12)/(100*12)=804/1200=8,04/12= 8 мес – для светильников с натриевыми лампами высокого давления

Выводы: несмотря на более низкую стоимость ламп и светильников накаливания, стоимости их замены по сравнению с натриевыми лампами высокого давления и их светильников, ламп накаливания требуется почти в 5 раз больше, светильники под лампы накаливания необходимо чаще чистить и срок службы их в 10 раз меньше. Экономия от установки натриевых ламп составила 27990,90 у. е., а срок их окупаемости на 1 год меньше.

Заключение

В ходе данной работы я ознакомился с руководящими документами; научился производить расчеты и выбор трансформаторов тока; узнал назначение, принцип действия, область применения и методы расчета трансформаторов тока и напряжения. Научился производить расчет экономии электроэнергии в производстве. Экономия электроэнергии возможна при сведении к минимуму потерь электроэнергии. Технологические потери (расход) электроэнергии при ее передаче по электрическим сетям (далее – ТПЭ) – потери в линиях и оборудовании электрических сетей, обусловленные физическими процессами, происходящими при передаче электроэнергии в соответствии с техническими характеристиками и режимами работы линий и оборудования с учетом расхода электроэнергии на собственные нужды подстанций и потерь, вызванных погрешностью системы учета электроэнергии. Определяются расчетным путем.

Коммерческие потери электроэнергии (их определение в законодательной базе отсутствует) связаны с неоплатой потребителем электрической энергии, а также ее хищением. Необходимо учитывать погрешности измерительных комплексов, в которые входят трансформаторы тока и трансформаторы напряжения. Здесь важны их классы точности, реальные условия эксплуатации, недогрузка или перегрузка, правильность схем подключения.

Литература

Справочник по проектированию электрических сетей и оборудования / Под ред. Ю.Г. Барыбина – М.: Энергоатомиздат, 1991. – 464 с.

Головкин Г.И. Энергосистема и потребители ЭЭ. – М., Энергоатомиздат, 1984 г. – 360 с.

Справочная книга для проектирования электрического освещения / Под ред. Г.М. Кнорринга. – Л.: Энергия, 1976 – 384 с.

TACIS. Курс «Освещение». – Киев, 1999.

Правила пользования электрической энергией. НКРЭ, Киев, 1996 г.

Форум АСУТП

Клуб специалистов в области промышленной автоматизации

Читайте так же:
Для электросчетчика подходит кабель

  • Обязательно представиться на русском языке кириллицей (заполнить поле «Имя»).
  • Фиктивные имена мы не приветствуем. Ивановых и Пупкиных здесь уже предостаточно — придумайте что-то пооригинальнее.
  • Не писать свой вопрос в первую попавшуюся тему — вместо этого создать новую тему.
  • За поиск и предложение пиратского ПО — бан без предупреждения.
  • Рекламу и частные объявления «куплю/продам/есть халтура» мы не размещаем ни на каких условиях.
  • Перед тем как что-то написать — читать здесь и здесь.

Выбор трансформатора тока для двигателя (400В)?

Выбор трансформатора тока для двигателя (400В)?

5A выход 4..20mA, напр., Weidmueller WAZ1 CMA LP 1/5/10A ac — CURRENT TRANSDUCER),
Вопрос по выбору ТТ, кто-нибудь встречал какие-либо рекомендации по выбору ТТ?
всегда брал с запасом (в 2-3 от номинала двигателя), плюс унификация по проекту (стараюсь брать несколько типоразмеров на весь проект).
Но возможно кто-то встречал рекомендации по выбору ТТ? (мерять четко пусковой ток x5-7 номинала не требуется),
Как думаете если брать такие ТТ будет нормально?

Напр., двигатели
15kW/29A – беру ТТ 100/5A

30kW/55A – беру ТТ 200/5A
37kW/66A – беру ТТ 200/5A

55kW/103A – беру ТТ 250/5A
75kW/134A – беру ТТ 250/5A

132kW/230A – беру ТТ 400/5A

Неедавно увидел рекомендации от Schneider Electric где была такая фраза
Для измерения тока в линии электродвигателя необходимо выбрать ТТ с первичным током Ip=Id/2 (Id=пусковой ток двигателя).

ТТ используем от Siemens серии 4NC (CLASS 1, 5VA, eg. 4NC5222-2CE20).

Вы для таких задач (когда сигнал нужно передать в ПЛК) используете ТТ на 5 или 1 A (вторичный ток)?
В общем, у кого какие мысли на этот счет…касательно примера по выбору ТТ (в зависимости от мощности)?

Выбор трансформатора тока для двигателя (400В)?

Сообщение MaksimNT » 11 апр 2019, 13:00

Выбор трансформатора тока для двигателя (400В)?

не могли бы Вы объяснить на пальцах, на примере.

ПУЭ
Учет с применением измерительных трансформаторов
1.5.16. Класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5. Допускается использование трансформаторов напряжения класса точности 1,0 для включения расчетных счетчиков класса точности 2,0.

Для присоединения счетчиков технического учета допускается использование трансформаторов тока класса точности 1,0, а также встроенных трансформаторов тока класса точности ниже 1,0, если для получения класса точности 1,0 требуется установка дополнительных комплектов трансформаторов тока.

Трансформаторы напряжения, используемые для присоединения счетчиков технического учета, могут иметь класс точности ниже 1,0.

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40% номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5%.

Как я понимаю этот раздел больше относится к счетчикам электроэнергии. чем к измерению тока двигателя.
Но если и так. то что значит «при максимальной нагрузке присоединения» для мотора, это какой ток можно брать номинальный или пусковой,
если номинальный
то , например,
30kW/55A – беру ТТ 200/5A
55A это 27% от номинала ТТ. получается что 200/5 слишком большой ТТ для такого мотора?

Выбор трансформатора тока для двигателя (400В)?

Сообщение MaksimNT » 11 апр 2019, 17:34

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40% номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5%. [/i]

Как я понимаю этот раздел больше относится к счетчикам электроэнергии. чем к измерению тока двигателя.

Да, излишний диапазон,
НО может выбор продиктован электродинамической и термической стойкостью.

Для КИП встречается в нормах и правилах — применение в диапазоне от 1/3 до 2/3 шкалы измерения, но в электроснабжении расчетов побольше

Выбор коммутационных аппаратов и токоведущих частей распределительных устройств — Выбор трансформаторов тока

Содержание материала

  • Выбор коммутационных аппаратов и токоведущих частей распределительных устройств
  • Расчетные условия для проверки
  • Выбор выключателей
  • Выбор трансформаторов тока
  • Выбор трансформаторов напряжения
  • Выбор шин закрытых распределительных устройств
  • Примеры выбора шин ЗРУ
  • Выбор жестких шин ОРУ
  • Выбор кабелей
  • Выбор кабелей по допустимому току
  • Выбор токоограничивающих реакторов
  • ПРИЛОЖЕНИЕ А
Читайте так же:
Постоянная электросчетчика что это такое

3 ВЫБОР ИЗМЕРИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ
3.1 Выбор трансформаторов тока
Трансформатор тока предназначен для преобразования тока до значения удобного для измерения, а также для отделения цепей измерения и защиты от первичных цепей высокого напряжения.
Для питания измерительных приборов и устройств релейной защиты и автоматики целесообразно использовать трансформаторы тока (ТА) с несколькими сердечниками. Класс точности измерительного трансформатора тока выбирается в зависимости от его назначения. Если к трансформатору тока подключаются расчетные счетчики электроэнергии, то класс точности его работы должен быть 0,5. Если же к трансформатору тока подключаются только измерительные приборы, то достаточен класс точности единица.
Трансформаторы тока, предназначенные для питания измерительных приборов, выбираются:
а) по напряжению
; (3.1)
б) по току
. (3.2)
Номинальный первичный ток трансформатора тока должен быть как можно ближе к рабочему току установки, так как недогрузка первичной обмотки приводит к увеличению погрешностей;
в) по конструкции и классу точности.
Выбранные трансформаторы тока должны быть проверены:
а) по электродинамической стойкости
или (3.3)
где — ударный ток КЗ в месте установки трансформатора тока;
— кратность электродинамической стойкости трансформатора тока по каталогу;
— номинальный первичный ток трансформатора тока;
— ток электродинамической стойкости трансформатора тока по каталогу.
Шинные трансформаторы тока на электродинамическую устойчивость не проверяются, так как их устойчивость определяется устойчивостью шинной конструкции;
б) по термической стойкости
, (3.4)
где — тепловой импульс тока КЗ в месте установки трансформатора тока;
— допустимое значение теплового импульса для трансформатора тока, которое определяется по (1.21) при или по (1.22) при .
в) по вторичной нагрузке
, (3.5)
где — расчетная вторичная нагрузка трансформатора тока;
— номинальная допустимая нагрузка трансформатора тока для выбранного класса точности.
Расчетная вторичная нагрузка трансформатора тока состоит из сопротивления приборов , соединительных проводов и переходного сопротивления контактов :
. (3.6)
Сопротивление приборов определяется по выражению
, (3.7)
где — мощность, потребляемая приборами;
— номинальный ток вторичной обмотки трансформатора тока.
Для подсчета мощности потребляемой приборами нужно составить таблицу 3.1 , в которую необходимо внести все приборы, подключенные к вторичной обмотке трансформатора тока.
Расчет сопротивления приборов ведется для наиболее нагруженной фазы.

Таблица 3.1 — Вторичная нагрузка трансформаторов тока

Выбор трансформаторов тока для присоединения расчетных счетчиков

По напряжению… На соответствие классу точности… Расчетная схема для выбора трансформаторов напряжения…

  1. Разновидность устройств
  2. Зачем нужны трансформаторы тока
  3. Используемая литература
  4. Выбор трансформаторов тока. Различия и классификация
  5. Устройство ТТ
  6. Правила выбора
  7. Для чего нужны устройства
  8. Подключение ТТ
  9. Советы и рекомендации по выбору
  10. Одно трансформаторные ТП
  11. На что следует обращать внимание при выборе трансформатора
  12. Двух трансформаторные ТП

Разновидность устройств

При выборе трансформатора нужно учитывать его место расположение (закрытые или открытые распределительные установки, встраиваемые системы), а также конструктивные особенности исполнения (проходные, шинные, опорные, разъемные).

Проходной ТТ устанавливают в комплексных РУ и используют в качестве проходного изолятора. Опорные используют для установки на ровной поверхности. Шинный ТТ устанавливается непосредственно на токоведущие части. В роли первичной обмотки трансформатора выступает участок шины. Встроенные модели как элемент конструкции, устанавливаются в силовые трансформаторы, масляные выключатели и пр. Разъемные ТТ выполнены разборными для быстрой установки на жилы кабеля, без физического вмешательства в целостность электрических сетей.

Кроме того, разделение также проходит по типу используемой изоляции:

  • литая;
  • пластмассовый корпус;
  • твердая;
  • вязкая компаудная;
  • маслонаполненная;
  • газонаполненная;
  • смешанная масло-бумажная.

И различают по спецификации и сфере применения:

  • коммерческий учет и измерения;
  • защита систем электроснабжения;
  • измерения текущих параметров;
  • контроль и фиксация действующих значений;

Также различаются трансформаторы по напряжению: для электроустановок до 1000 Вольт и выше.

Зачем нужны трансформаторы тока

Электрики, знакомые с электрооборудованием

220 В могут заметить, что квартирные счетчики электроэнергии подключаются непосредственно к линии без использования трансформаторов тока. Однако уже в трехфазных сетях трансформаторное подключение встречается чаще, чем прямое включение. В цепях же ПКУ и распределительных устройств 6-10 кВ все измерительные устройства подключаются через трансформаторы тока.

Трансформатор тока предназначен для уменьшения величины измеряемого тока и приведения его к стандартному диапазону. Как правило, ток преобразуется к стандартному значенияю 5 А (реже — 1 А или 10 А).

Еще одним назначением трансформаторов тока является создание гальванической развязки между измеряемой и измерительной цепями.

Используемая литература

  1. ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».
  2. Правила устройства электроустановок, 7-е изд.
  3. IEС 60044-1 «INTERNATIONAL STANDARD. Instrument transformers — Part 1: Current transformers»
  4. М. Зихерман «Стандарты по измерительным трансформаторам. Новые требования».
  5. Легостов В.В., Легостов В.В. «Измерительные трансформаторы тока», ИЗМЕРЕНИЕ.RU № 12 2’06
  6. Афанасьев В.В. «Высоковольтные ТТ».
  7. ГОСТ Р 52736-2007 «Методы расчета термического и динамического действия тока короткого замыкания».
Читайте так же:
Поверка электросчетчика без замены

Серяков Андрей Александрович,
главный инженер проекта
Управления технического сопровождения
ООО «Инженерный центр «ЭНЕРГОАУДИТКОНТРОЛЬ»

Выбор трансформаторов тока. Различия и классификация

Трансформаторы тока служат для измерения характеристик в пределах значений номинального напряжения (Uном) от 0,66 до 750 кВ.

Устройства служат для изменения параметров тока до показателей удобных для производства измерений с последующей передачей информативного сигнала измерения приборам, работающим в релейных цепях защиты. Приборы служат для выполнения функций по измерению электрической энергии, защиты от воздействий токов КЗ и других неисправностей, автоматики и управления в электроцепях переменного тока промышленной частоты 50 – 60 Гц.

Устройство ТТ


Трансформатор тока

Трансформаторы преобразовывают измеряемую величину из большей в меньшую или наоборот. Действуют они с помощью электромагнитной индукции. В основе прибора находится магнитный сердечник, собранный из прямоугольных стальных рамок, а на нём закреплены витки изолированных проводов — обмотки. Входная катушка подключена к источнику и у ТТ представлена всего одним витком. В зависимости от модели трансформатора место первичной обмотки может занимать:

  • намотка на сердечнике;
  • зафиксированная шина с соединительным винтом, которая проходит через корпус;
  • отверстие ступенчатой или прямоугольной формы, чтобы пропустить и закрепить шину при монтаже;
  • круглое окно под жилу кабеля для бесконтактных соединений (бытовые реле со встроенными трансформаторами).


Конструкция ТТ

Отличие измерительных трансформаторов от силовых в том, что ток вторичной цепи остаётся постоянным вне зависимости от сопротивления потребителя — меняется напряжение. У включённого в сеть трансформатора тока нельзя размыкать вторичную обмотку. Она всегда должна быть замкнута на измерительное устройство, при его отсутствии — перемычками накоротко. Если продуцируемый ток исчезнет, напряжение достигнет значения в киловольты. Скачок спровоцирует выход из строя аппаратуры (особенно чувствительны полупроводниковые приборы), повреждение изоляции и возгорание, витковое замыкание, травмирование обслуживающего персонала. В целях безопасности заземление каждой обмотки в одной точке является обязательным.

Правила выбора

При выборе трансформатора его напряжение не должно быть меньшим, чем номинальное напряжение счетчика.

Аналогично поступаем при выборе ТТ по току, который должен быть равен или больше максимального тока контролируемой установки. С учетом аварийных режимов работы.

I ном ≥ I макс.уст

В ПУЭ описаны правила и нормативные требования к устройствам коммерческого учета счетчиками, а также уделено не мало внимания трансформаторам тока и нормам расчетных мощностей. Детально ознакомится можно в пункте ПУЭ 1.5.1.

Помимо этого существуют следующие правила выбора трансформатора тока для счетчика:

  • Длина и сечение проводников от ТТ к узлу учета должны обеспечивать минимальную потерю напряжения (не более 0.25% для класса точности 0.5 и 0.5% для трансформаторов точностью 1.0). Для счетчиков, используемых для технического учета, допускается падение напряжения 1.5% от номинального.
  • Для систем АИИС КУЭ трансформаторы должны иметь высокий класс точности. Для установки в такие системы используют ТТ класса S 0.5S и 0.2S, позволяя увеличить точность учета при минимальных первичных токах.
  • Для коммерческого учета нужно выбрать класс точности ТТ не более 0.5. При использовании счетчика точностью 2.0 и для технического учета, допускается применение трансформатора класса 1.0.
  • Выбор ТТ с завышенной трансформацией допускается, если при максимуме тока нагрузки, ток в трансформаторе не меньше 40% от I ном электросчетчика.
  • При расчете количества потребленной энергии необходимо учитывать коэффициент преобразования.
  • Расчет мощности ТТ производится в зависимости от сечения проводника и расчетной мощности.

По таблице ниже, согласно получившимся расчетным параметрам выбираем ближайший ТТ:

При заключении договора с энергоснабжающей организацией, в случае когда для производства учета необходима установка трансформаторов тока, для организации узла учета, выдаются технические условия, в которых указано модель узла учета а также тип ТТ, номинал автоматических выключателей место их установки для конкретной организации. В результате самостоятельные расчеты ТТ производить не нужно.

т. +7 (933) 335-40-47

Для чего нужны устройства

При организации бесперебойной работы любой промышленной организации активно задействуются трансформаторы тока нулевой последовательности. Посредством данных приборов удается проводить без каких-либо помех сварочные работы. Это обусловлено тем, что трансформаторы способны нормализовать мощность тока в сети, благодаря чему не происходит скачков напряжения. Соответственно владельцы промышленных объектов могут не переживать по поводу сохранности дорогостоящего оборудования, так как даже при работе сварочных агрегатов не будет происходить замыканий и больших перепадов в электрической сети.

Читайте так же:
Энергосбыт плюс показания счетчика электричество

Многие владельцы городских квартир и загородных домов не однократно сталкивались со скачками напряжения, из-за которых выходила из строя бытовая техника. Чтобы защитить свое имущество от повреждений, собственники таких объектов недвижимости используют трансформаторы тока, которые для каждого жилища выбирается по мощности.

При организации бесперебойной работы любой промышленной организации активно задействуются трансформаторы тока нулевой последовательности.

Подключение ТТ

«Первичка» подключается к клеммам прибора, обозначенным символами «U1», «U2» или «Л1», «Л2» (в зависимости от производителя) с соблюдением полярности. Для ТТ шинного подключения «первичка» должна проходить в середине сердечника в направлении, обозначенном на корпусе прибора стрелкой. Проводка «вторички» подсоединяется к клеммам с обозначением «I1», «I2» или «И1», «И2» также с соблюдением полярности.

Вторичная обмотка, предназначенная для подключения релейной защиты, обозначается «I3», «I4» или «И3», «И4». Класс точности трансформации может быть ниже, чем для коммерческой цепи.

Советы и рекомендации по выбору

Основная рекомендация по подбору трансформаторов тока состоит в тщательном и полном использовании всех параметров и критериев выбора преобразователей тока по классификации и номинальным значениям оборудования в равной степени без легкомысленного отношения к любому из них.

Выбор трансформаторов тока в зависимости от их назначения в обязательном порядке должен соответствовать всем нормативным документам и стандартам ГОСТ, действующим в текущий момент их выбора.

При использовании автоматизированных программ расчета номиналов последовательных трансформаторов, перепроверка полученных значений несколькими подобными сервисами не станет лишним для подтверждения правильности полученных данных.

Одно трансформаторные ТП

Однотрансформаторные ТП выгодны еще и потому, что если работа предприятия сопровождается периодами малых нагрузок, то за счет наличия перемычек между ТП на вторичном напряжении можно отключать часть трансформаторов, создавая этим экономически целесообразный режим работы. Под экономичным понимается такой режим работы, который обеспечивает минимальные потери мощности в трансформаторах.

В данном случае решается задача выбора оптимального количества работающих трансформаторов.

Такие ТП могут быть экономичны и в плане максимального приближения напряжения 6—10 кВ к электроприемникам, поскольку за счет децентрализации трансформирования электрической энергии уменьшается протяженность сетей до 1 кВ. В этом случае вопрос решается в пользу применения двух однотрансформаторных по сравнению с одной двухтрансформаторной подстанцией.

На что следует обращать внимание при выборе трансформатора

При выборе силового трансформатора необходимо обратить внимание на его нагрузку и область применения. Но чтобы решить задачу, следует правильно поставить вопрос. В данном случае их основных будет три:

  1. Мощность выбранного трансформатора является достаточной для того, чтобы справляться с предполагаемой нагрузкой, так же, как и с определенной величиной перегрузки?
  2. Возможно ли увеличение номинальной мощности трансформатора при возможном увеличении нагрузки?
  3. Срок службы трансформатора? Стоимость трансформатора, стоимость монтажа, пусконаладки и обслуживания?

Если эти вопросы все еще остались открытыми, то предлагаем воспользоваться конфигуратором ДКС, специально разработанный специалистами компании для решения подобных задач.

Двух трансформаторные ТП

Двухтрансформаторные ТП применяются при преобладании электроприемников I и II категорий. При этом мощность трансформаторов выбирается такой, чтобы при выходе из работы одного Другой трансформатор с учетом допустимой перегрузки принял бы на себя нагрузку всех потребителей (в этой ситуации можно временно отключить электроприемники III категории). Такие подстанции желательны и независимо от категории потребителей, но при наличии неравномерного суточного или годового графика нагрузки.

В этих случаях выгодно менять присоединенную мощность трансформаторов, например, при наличии сезонных нагрузок, одно или двухсменной работы со значительными изменениями загрузки смен.

Электроснабжение населенного пункта, микрорайона города, цеха, группы цехов или всего предприятия может быть обеспечено от одной или нескольких ТП. Целесообразность сооружения одно или двухтрансформаторных подстанций определяется в результате техникоэкономического сравнения нескольких вариантов системы электроснабжения. Критерием выбора варианта является минимум приведенных затрат на сооружение системы электроснабжения. Сравниваемые варианты должны обеспечивать требуемый уровень надежности электроснабжения.

В системах электроснабжения промышленных предприятий наиболее распространены следующие единичные мощности трансформаторов: 630, 1000,1600 кВА, в электрических сетях городов — 400, 630 кВА. Практика проектирования и эксплуатации показала необходимость применения однотипных трансформаторов одинаковой мощности, так как разнообразие их создает неудобства в обслуживании и вызывает дополнительные затраты на ремонт.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector