Sibprompost.ru

Стройка и ремонт
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вопросы и ответы

Вопросы и ответы

Вопрос: Что такое потери?

Ответ:

Фактические (отчетные) потери электроэнергии – разность электроэнергии, поступившей в сеть, и электроэнергии, отпущенной потребителям, определяемая по данным системы учета поступления и полезного отпуска электроэнергии.
Технические потери электроэнергии – потери электроэнергии, обусловленные физическими процессами в проводах и электрооборудовании, происходящими при передаче электроэнергии по электрическим сетям.
Потери электроэнергии, обусловленные инструментальными погрешностями ее измерения – недоучет электроэнергии, обусловленный техническими характеристиками и режимами работы приборов учета электроэнергии на объекте (отрицательная систематическая составляющая погрешности системы учета).
Технологические потери – сумма технических потерь, расхода электроэнергии на собственные нужды подстанций и потерь, обусловленных инструментальными погрешностями измерения электроэнергии.
Коммерческие потери – потери, обусловленные хищениями, несоответствием показаний счетчиков оплате за электроэнергию и другими причинами в сфере организации контроля за потреблением электроэнергии.

Вопрос: Подскажите, где я могу посмотреть график включения и отключения наружного освещения на 2017 и 2018 год?

Ответ: С 10.08.2017 г. действует график включения-отключения наружного освещения в городе Мурманске на 2017-2018 гг., утвержденный Постановлением Администрации города Мурманска № 681 от 20.03.2017 г. Он размещен на официальном сайте администрации г. Мурманска.

Вопрос: Добрый день! В связи с ремонтом в квартире и полной заменой проводки, хочу перенести счетчик в квартиру, где будут располагаться все автоматы и стабилизаторы. Куда обратиться, с какими документами? Могу ли я сам перенести счетчик? Заранее спасибо.

Ответ: Внутридомовые сети находятся на обслуживании исполнителя коммунальных услуг данного дома – УК, ТСЖ или ЖСК. Таким образом, по данному вопросу Вам необходимо обратиться к исполнителю коммунальных услуг.

Вопрос: В квартире стоит счетчик старого образца. Хочу заменить его на новый электронный, что мне для этого нужно? Могу ли я сам демонтировать и установить новый, а потом вызвать вас для опломбировки?

Ответ: Сетевая организация не оказывает услугу по опломбированию приборов учета, установленных в квартирах, так как внутридомовые электрические сети находятся на обслуживании у исполнителя коммунальных услуг (УК, ТСЖ, ЖСК). По вопросу замены прибора учета электроэнергии Вы можете обраться в любую специализированную организацию, которая оказывает данные услуги.

Вопрос: Куда юридическим лицам г. Мурманска и г. Колы следует направлять показания электросчетчиков?

Ответ:

  • на электронный адрес: balans@mges.ru;
  • по факсу 47-36-01;
  • по почте на адрес: г. Мурманск, ул. Шмидта, д. 16;
  • доставить лично или курьером по адресу: г. Мурманск, ул. Шмидта, д. 16, 1 эт.

Вопрос: Как определить коэффициент трансформации в измерительном комплексе, оборудованном измерительными трансформаторами тока?

Ответ: Для определения коэффициента трансформации Ктр необходимо разделить значение первичного тока на значение вторичного тока, указанные в паспорте трансформаторов тока или на самих трансформаторах.
Пример: на трансформаторах тока имеется надпись 200/5 А, это значит, что 200 надо разделить на 5, и Ктр будет равен 40.

Вопрос: Как произвести расчет количества потребленной электроэнергии W в измерительном комплексе, оборудованном измерительными трансформаторами тока?

Ответ: Необходимо разность показаний (текущее показание, минус предыдущее показание) умножить на коэффициент трансформации.
Пример:

  • Текущее показание 01005;
  • Предыдущее показание 01000;
  • Коэффициент трансформации равен 40.
  • Тогда количество потребленной электроэнергии будет равно (01005 — 01000) * 40 = 200 кВтч.

Вопрос: Как произвести расчет количества электроэнергии, потребленной на объекте, с учетом потерь 2,2%?

Ответ: Необходимо расход электроэнергии умножить на процент потерь и разделить на 100, к полученному значению прибавить расход электроэнергии. Итог округлить до целого значения.
Пример:

  • Расход электроэнергии без учета потерь равен 200 кВтч;
  • Потери в сетях потребителя равны 2,2 %.
  • Тогда расход электроэнергии с учетом потерь составит W=200 * 2,2 / 100 + 200 = 204,4 кВтч.
  • ИТОГО: расход электроэнергии составил 204 кВтч.

Вопрос: Какой документ оформляется после проверки прибора учета электроэнергии?

Ответ: Согласно пункту 176 Основных положений функционирования розничных рынков электрической энергии, утвержденных постановлением Правительства РФ от 04.05.2012 г. № 442, результаты проверки приборов учета сетевая организация оформляет актом проверки расчетных приборов учета, который подписывается сетевой организацией и лицами, принимавшими участие в проверке. Акт составляется в количестве экземпляров по числу лиц, принимавших участие в проверке, по одному для каждого участника.

Вопрос: Является ли нарушением срыв пломбы на приборе учета электроэнергии?

Ответ: Согласно пункту 2 Основных положений функционирования розничных рынков электрической энергии, утвержденных постановлением Правительства РФ от 04.05.2012 г. № 442, срыв пломбы с расчетного прибора учета будет приравнен к безучетному потреблению электроэнергии, что приведет к потреблению электрической энергии с нарушением установленного договором энергоснабжения (купли-продажи (поставки) электрической энергии (мощности), выразившимся во вмешательстве в работу прибора учета (системы учета), обязанность по обеспечению целостности и сохранности которого возложена на потребителя (покупателя), в том числе в нарушении (повреждении) пломб и (или) знаков визуального контроля, нанесенных на прибор учета (систему учета), в несоблюдении установленных договором сроков извещения об утрате (неисправности) прибора учета (системы учета), а также в совершении потребителем (покупателем) иных действий (бездействий), которые привели к искажению данных об объеме потребления электрической энергии (мощности).

Вопрос: В каком месте должны устанавливаться приборы учета электроэнергии?

Ответ: Согласно пункту 144 Основных положений функционирования розничных рынков электрической энергии, утвержденных постановлением Правительства РФ от 04.05.2012 г. № 442, приборы учета подлежат установке на границах балансовой принадлежности объектов электроэнергетики (энергопринимающих устройств) смежных субъектов розничного рынка — потребителей, производителей электрической энергии (мощности) на розничных рынках, сетевых организаций, имеющих общую границу балансовой принадлежности (далее — смежные субъекты розничного рынка), а также в иных местах, определяемых в соответствии с настоящим разделом с соблюдением установленных законодательством Российской Федерации требований к местам установки приборов учета. При отсутствии технической возможности установки прибора учета на границе балансовой принадлежности объектов электроэнергетики (энергопринимающих устройств) смежных субъектов розничного рынка прибор учета подлежит установке в месте, максимально приближенном к границе балансовой принадлежности, в котором имеется техническая возможность его установки.

Читайте так же:
Индукционный счетчик электроэнергии устройство

Вопрос: Что такое измерительный комплекс?

Ответ: Под измерительным комплексом понимается совокупность приборов учета и измерительных трансформаторов тока и (или) напряжения, соединенных между собой по установленной схеме, через которые такие приборы учета установлены (подключены), предназначенная для измерения объемов электрической энергии (мощности) в одной точке поставки.

  1. Главная
  2. Вопросы и ответы

Центр обслуживания клиентов: ул. Шмидта, д. 16, г. Мурманск. Режим работы: Пн.-Пт.: 08:00-17:00.
тел.: 8 (8152) 60-01-91, 60-18-55 | факс: 60-05-82 | cok @ moesk 51. ru

Офис обслуживания в г. Кандалакша: ул. Спекова, д.71, Режим работы: Пн.-Пт.: 08:00-17:00, обед 12:00-13:00,
тел.: 8 (815-33) 2-06-45 | факс 8 (815-33) 9-94-24

Приемная: тел.: 8 (8152) 60-01-89, 60-18-77 | факс: 60-05-82 | info @ moesk 51. ru

Горячая линия по вопросам качества и перерывов в подаче электрической энергии:
8 (8152) 47-41-04, 47-25-42 | 8 (81552) 533-58 | 8 (81533) 944-02 | 8 (81532) 745-21

Используя наш сайт, вы даете согласие АО «МОЭСК» и лицам, действующим по его поручению,
на обработку персональных данных в соответствии с «Политикой».

ООО «Саратовское предприятие городских электрических сетей»

Диалог 10. Особенности начисления оплаты за потребленную электроэнергию: Часть 1. Изучаем расчетную часть платежной квитанции

Уважаемые потребители и посетители сайта, в Диалоге 2 («Первые шаги на пути исполнения нового законодательства») мы упоминали о том, что нормативными документами установлена новая форма платежной квитанции, а в Диалоге 7 («Правовая сущность новой формы оплаты за потребленную электрическую энергию») подробно описали вид такого документа и даже представили его рисунок в форме бесконвертного отправления.

Наступила пора перейти к детальному рассмотрению содержательной части платежной квитанции. В последнее время от граждан начали приходить письма с просьбой разъяснить значение некоторых полей квитанции, в которых отображается информация по начисленной плате за потребленную электроэнергию. Мы оперативно отвечали на эти письма. Тот факт, что эти вопросы участились, расширяет данную проблему как минимум до границ развернутого диалога. Думается даже, что стоит предпринять небольшую серию Диалогов, посвященных алгоритмам начисления платы за электроэнергию.

Мы рады, что Вы стремитесь к доверительным беседам с нами. После Диалога 6. («Общедомовое электричество. Особенности потребления и расчета») где мы разъяснили значение нового поля платежного документа — «ОДН», сомнения граждан в правомерности начисления платы за общедомовое электропотребление рассеялись. Уверены, что и по остальным полям квитанции вопросов станет куда меньше.

Самое частое недоумение от потребителей сегодня звучит так: «В конце каждого месяца подаю данные электрического счетчика, и все равно регулярно начисляется несколько дней по нормативам».

Итак, начнем по порядку.

Рис. 1. Фрагмент платежной квитанции, включающий расчетные данные

На рисунке 1 представлен фрагмент платежной квитанции, содержащий расчетные данные по потребленной за месяц электроэнергии. Слева имеются строки «по счетчику» и «среднемесячное начисление (при отсутствии показаний)». Давайте для начала разберемся, почему эти строки так дружественно и с таким постоянством соседствуют в платежке.

Согласно Правилам предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденных Постановлением Правительства РФ от 06.05.2011 № 354, плата за коммунальные услуги вносится на основании платежных документов, представляемых потребителям исполнителем не позднее 1-го числа месяца, следующего за истекшим расчетным периодом, за который производится оплата, если договором управления многоквартирным домом не установлен иной срок представления платежных документов. Другими словами, скажем, до 1 сентября 2013 года исполнитель коммунальных услуг должен предоставить потребителям платежные документы за август 2013 года.

До апреля 2013 года потребители должны были снимать показания с 23 по 25 число и передавать их не позднее 26 числа. Новая редакция «Правил…» не только расширила сроки передачи показаний, но и вообще отменила передачу как обязанность. Теперь пункт 33 указанного Постановления гласит: при наличии индивидуального (а также общего квартирного – для коммунальных квартир) прибора учета граждане имеют право снимать и передавать его показания исполнителю (уполномоченному им лицу) не позднее даты, установленной договором, содержащим положения о предоставлении коммунальных услуг.

Согласно пункту 37 «Правил предоставления коммунальных услуг…», расчетный период для оплаты коммунальных услуг устанавливается равным календарному месяцу.

Что мы имеем в итоге: с одной стороны, человек в любое время передает показания (либо не передает их), с другой стороны – исполнитель коммунальных услуг рассчитывает плату за электроэнергию с первое по последнее число каждого месяца. На рисунке 2 (сверху) представлена диаграмма, на которой отмечены два действия – передача показаний 22 августа 2013 года и расчет потребителя по 31 августа 2013 года.

Допустим, в августе потребитель передал показания 22 числа. Исполнитель (юридическое лицо или индивидуальный предприниматель, предоставляющий потребителю коммунальные услуги) рассчитывает плату за электроэнергию по 22 августа, согласно переданным показаниям. Но чтобы закрыть календарный период, исполнитель должен произвести расчет до 31 августа. Как быть? Ответ прост: объем электроэнергии за период с 23 по 31 августа подсчитывается по правилу абзаца б) статьи 59 Постановления № 354 – как за непредставленные показания, то есть берется средняя величина расхода электроэнергии за период работы прибора учета, равный 6 последним месяцам.

Читайте так же:
Конструкция электросчетчика старого типа

Рис. 2. Передача показаний и расчет за потребленную электроэнергию, согласно законодательству

Таким образом, оба вида расчета за электроэнергию будут суммироваться, однако при этом данные заносятся в отдельные строки платежного документа.

Нижняя диаграмма рисунка 2 отображает дату передачи показаний в следующем месяце и, соответственно, 2 расчетных периода. Допустим, потребитель передает показания 19 сентября. Исполнитель рассчитывает его… что Вы подумали? с 1 сентября? Нет, ни в коем случае! Именно с той даты, с которой показаний не было: с 22 августа. Неважно, что с 22 по 31 августа потребителю была начислена сумма по среднему потреблению электроэнергии за последние 6 месяцев. В сентябре ему производится расчет с 22 августа по 19 сентября. Это значит, что за период времени с 22 по 31 августа потребителю производится ПЕРЕРАСЧЕТ. И мы видим, что отрезок прямой времени, отображающий период с 22 по 31 августа, из красного превращается в зеленый. Для наглядности красным цветом выделены участки, когда расчет производится «вслепую», без учета показаний счетчика, а зеленым – когда показания известны.

Вы спросите, а можно ли передать показания точно в последний день месяца, чтобы получить в платежке только одну строчку? Мы ответим – это невозможно, поскольку за один день невозможно произвести расчет нескольким сотням тысяч абонентов. На данную операцию уходит несколько дней, вот почему в платежке всегда будут две отдельные строки – «по счетчику» и «среднемесячное начисление (при отсутствии показаний)».

В завершение нашей беседы вернемся к рисунку 1 и поясним те поля платежной квитанции, которые могут вызвать вопросы у потребителей:

«Жил + не жил» – общая площадь всех жилых и нежилых помещений;

«МОП» – суммарная площадь мест общего пользования. В сумме два этих значения равны общей площади многоквартирного жилого дома;

«ИПУ» – индивидуальный прибор учета;

«ОДПУ» – общедомовой прибор учета;

«Коэф. ПУ» – коэффициент трансформации при оплате за электроэнергию. Коэффициент трансформации применяется, если установлен счетчик не прямого включения. Приборы учета электроэнергии не прямого включения устанавливаются в случаях, когда у потребителя мощность потребления большая и ее невозможно подключить через обычный счетчик. Электросчетчики не прямого включения работают с малыми токами нагрузки. Но так как токи потребления в общедомовом объеме потребления электроэнергии на порядок выше, для того чтобы уберечь счетчик от выхода из строя, их необходимо уменьшить. Это осуществляется посредством трансформаторов тока, их подбирают в зависимости от нагрузки потребителя. В нашем примере используются трансформаторы тока 200/5, они уменьшают ток в 40 раз (200/5 = 40). Соответственно, счетчик считает в 40 раз меньше и для того, чтобы узнать реальный расход, необходимо показания счетчика умножить на 40;

«Тариф». Тарифы в электроэнергетике – система ценовых ставок, по которым осуществляются расчеты за электрическую энергию и услуги на оптовом и розничных рынках. В данном случае применяется тариф 2,70 руб. – стоимость электроэнергии в домах, не оснащенных электрическими плитами.

В принципе задача исполнителя при формировании платежки заключается в том, чтобы правильно рассчитать потребителя за отпущенный ему коммунальный ресурс. И предельно разветвленная классификация видов информации на различные группы (расчет по показаниям – расчет без показаний, индивидуальное потребление – общедомовое потребление, площадь квартиры – общая площадь дома и т.д.) вместо того, чтобы запутать потребителя, должна помочь ему ясно представлять, с помощью каких критериев производится расчет.

В следующем Диалоге мы побеседуем о всех допускаемых законодательством ситуациях, в которых в зависимости от набора факторов начисление производится по разным строго установленным формулам. Когда Вы увидите на простых примерах, как осуществляется расчет платы за потребленную электроэнергию, Вам все станет понятно…

Что такое трансформатор тока, его конструкция и принцип работы

Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Рис. 1. Трансформатор тока

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).

Рис. 2. Промышленный керамический трансформатор тока

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.

Читайте так же:
Многотарифные счетчики расчет оплаты электроэнергии

Рис. 3. Принципиальная схема трансформатора тока

В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).

Рис. 4. Схематическое изображение ТТ Рис. 5. Устройство ТТ

Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).

Рис. 6. ТТ с разъемным корпусом

Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.

Принцип действия.

Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.

Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .

Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.

На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.

Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.

В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.

Рис. 7. Принцип действия трансформатора тока

На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

  1. По назначению:
    • защитные;
    • линейки измерительных трансформаторов тока;
    • промежуточные (используются для выравнивания токов в системах дифференциальных защит);
    • лабораторные.
  2. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
    • внутренние (размещаются в ЗРУ);
    • встраиваемые;
    • накладные (часто совмещаются с проходными изоляторами);
    • переносные.

Рис. 8. Пример наружного использования ТТ

  • Классификация по типу первичной обмотки:
    • многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
    • одновитковые;
    • шинные.
  • По величине номинальных напряжений:
    • До 1 кВ;
    • Свыше 1 кВ.

Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

Расшифровка маркировки

Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:

  • Т — трансформатор тока;
  • П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
  • В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
  • ВТ — встроенный в конструкцию силового трансформатора;
  • Л— со смоляной (литой) изоляцией;
  • ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
  • Ф — с надежной фарфоровой изоляцией;
  • Ш — шинный;
  • О — одновитковый;
  • М — малогабаритный;
  • К — катушечный;
  • 3 — применяется для защиты от последствий замыкания на землю;
  • У — усиленный;
  • Н — для наружного монтажа;
  • Р — с сердечником, предназначенным для релейной защиты;
  • Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
  • М — маслонаполненный. Применяется для наружной установки.
  1. Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
  2. Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
  3. следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
  4. после позиции дробных символов — код варианта конструкционного исполнения;
  5. буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
  6. цифра на последней позиции — категория размещения.

Схемы подключения

Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.

Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.

При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.

Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.

Схема «неполная звезда» применяется для двухфазного соединения.

В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.

Основные схемы подключения:

Основные схемы подключения

  • В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
  • Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
  • Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
  • Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.

Технические параметры

Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.

Читайте так же:
Какой электросчетчик может сам передавать показания

Коэффициент трансформации

Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.

У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.

Класс точности

Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:

  • 0,1;
  • 0,5;
  • 1;
  • 3;
  • 10P.

Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.

О назначении

Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.

Как подключить трансформатор тока

Сегодня обсудим, как подключить трансформатор тока. Рассмотрим некоторые особенности измерительных приборов. Должны называть инструмент вспомогательным. Используется совместно со счетчиками электрической энергии, защитными цепями. Ток вторичной обмотки пропорционален потребляемому полезной нагрузкой – электрическими двигателями, нагревательными приборами, освещением. Позволит оценить параметры мощной промышленной сети без риска порчи контрольного оборудования. Косвенной выгодой становится безопасность обслуживающего персонала, снимающего показания, ведущего контроль. Значительно уменьшает требования к квалификации, снимает другие ограничения.

Общие сведения о трансформаторах тока

Трансформаторы тока создаются согласно нормативной документации. Параметры регламентированы. Например, стандартами:

  1. ГОСТ 7746-2001.
  2. ГОСТ 23624-2001.

Дело касается коэффициента трансформации. Главный параметр, показывающий отношение меж токами первичной, вторичной обмоток. Цифра позволит сопрягать трансформатор тока с счетчиком, защитным автоматом. Причем требования значительно снижаются. Сеть потребляет 200 А, коэффициент трансформации равен 100, достаточно наличия защитного автомата 2 А. Видите, очень выгодно. Безопасность персонала расписали.

Получается, во вторичной цепи напряжение сетевое. Выгоды не получается. Собственно, поэтому прибор называется трансформатором тока. Не меняет напряжения. Напоминаем, действующее значение фазы напряжения 380 вольт составляет 220 вольт. Работа с промышленной сетью напоминает однофазные. Трансформаторов тока понадобится три. Счетчик измеряет напряжение, ток, определяя параметры:

  • Полную мощность потребления в ВА.
  • Реактивную мощность в вар.
  • Активную мощность Вт.

Часто нужен нейтральный провод (даже в трехпроводных промышленных сетях). К трансформатору тока не относится. Включается не так, как обычный. Первичная обмотка малого сопротивления, чтобы не вносить возмущений в цепь. Включается последовательно полезной нагрузке (двигателям).

Типичный трансформатор включается следующим образом: нагрузка находится в цепи вторичной обмотки. Позволит развязать потребителя, источник по постоянному току (гальваническая развязка), получить нужные параметры. В нашем случае (!) манипуляций с входными напряжениями, токами не производится.

В цепь вторичной обмотки включается прибор измерения, контроля. Счетчики снабжены двумя катушками: тока, напряжения. В цепь вторичной обмотки включается первая. Катушка напряжения одним концом заводится на фазу, на второй подается нейтраль. Комплексный подход позволит оценить мощность. На нейтраль положено заводить один конец токовой катушки. Как узнать последовательность действий более подробно? Схема дается на приборе контроля, измерения. Трансформатор тока является изделием универсальными, тонкости нужно искать на корпусе (шильдике) стороннего оборудования.

Первичная обмотка включается последовательно полезной нагрузке, вторичная используется для внедрения в сеть устройств контроля, измерения. Подробная схема включения зависит от типа сопрягаемых устройств, приводится на корпусе, шильдике, инструкцией. Рассмотрим, как трансформатор тока обозначается электрическими схемами. На просторах сети встретим много ошибок. В предыдущих обзорах приводили рисунок трансформатора тока, просто копируем из предыдущей локации:

    Прямой толстой линией показана первичная обмотка. К одному концу подводится фаза, к другому подключается потребитель. Холодильник, кондиционер, завод. Чертеж дан показывает трехфазное напряжение 380 вольт. Показана одна ветка. Прочие подключаются аналогично. В нижнем правом углу можем видеть измерительные катушки счетчика. Одна из возможных схем, не является догмой. Подробно электрические карты приводятся корпусами, шильдиками приборов. Можно достать на специализированном форуме.

Подключение трансформатора тока

Что касается приборов, применяемых за пределами лабораторий, разброс ниже. Обратите внимание, нагрузка вторичной цепи ученых должна быть по возможности активной. Точнее говоря, если коэффициент мощности меньше 1, следует подключать только индуктивные сопротивления. По большей части выполняется, в особенности для трехфазных цепей. Сварочный аппарат на входе содержит обмотку трансформатора, двигатель подключается на катушку статора, ротора. Касается счетчиков, где витой провод послужит для оценки параметров напряжения, тока. Примеры индуктивных сопротивлений. В реальности лучше перестраховаться, если коэффициент мощности меньше 1 (реактивное сопротивление обусловило возникновение потерь), пусть лучше импеданс (комплексное сопротивление) будет индуктивным, не емкостным.

Маркировка трансформаторов тока

Прежде, чем произвести подключение трансформатора, убедитесь, что годится выбранным целям. Из сказанного выше понятно, как оценить количественно параметры, для применения знаний на практике следует уметь читать маркировку изделия. Код регламентируется стандартом. Приводим перечень параметров, указываемых производителем на шильдике трансформатора тока:

  1. Логотип производителя с последующей надписью «трансформатор тока». Достаточно сложно промахнуться, выбрав в магазине другой прибор.
  2. Тип трансформатора характеризуется конструктивными особенностями, видом изоляции. Расшифровка приводится в стандартах, указанных выше. Рядом в маркировке идет климатическое исполнение. Есть сомнения в умении читать шильдик, проще дома заранее распечатать таблицы ГОСТ. При необходимости следует изучить конструктивные особенности. Поможет понять, как подключить трансформатор, оценить пригодность для цепи в принципе.
  3. Порядковый номер по реестру предприятия-изготовителя понадобится при обращении в службу поддержки (иностранные компании), используется для отчетности, если покупку осуществит не физическое лицо.
  4. Номинальное напряжение первичной обмотки указывается для всех трансформаторов тока за исключением встроенных. Потому что в последнем случае электрические параметры должны быть соблюдены внешним по отношению к прибору устройством.
  5. Номинальная частота может отсутствовать, если (по значению напряжения) можно понять: стандартна для государства (РФ – 50 Гц).
  6. В природе встречаются трансформаторы с несколькими выводами вторичной обмотки. Позволит получить два-три прибора в одном. В зависимости от электрической схемы будет меняться коэффициент трансформации. Напротив параметров указывается номер вторичной обмотки.

Характеристики трансформатора тока

Надеемся, читатели теперь знают, чем рассматриваемая задача отличается от вопроса о том, как подключить понижающий трансформатор 220/12 В. Совершенно разные вещи. Обмотки идут последовательно с нагрузкой, измерителем. Коэффициент трансформации показывает, какой прибор контроля можно использовать во вторичной цепи.

Определение и расчет коэффициента трансформации счетчика электроэнергии

Last Updated on 04.10.2017 by Sia

Все приборы учета электроэнергии, которые рассчитаны на большие токи (от 100 А и выше) имеют в своем составе понижающие трансформаторы. Они уменьшают ток, поступающий непосредственно на измерительную часть. Одним из основных параметров для потребителя в этом случае является коэффициент трансформации счетчика электроэнергии. Он необходим для правильного снятия показаний с таких измерительных приборов.

Техническая характеристика коэффициента

Коэффициент трансформации – отношение токов нагрузки и электрического счетчика. В данном случае он всегда будет больше единицы, так как токи потребления превышают измерительные. При подсчете израсходованной электроэнергии, показания на циферблате или панели, умножаются на данный коэффициент. Получившееся значение является правильным количеством потребленных киловатт-часов.

А также трансформаторы имеют класс точности. Для оборудования учета электроэнергии он равен 0,2 или 0,5. Чем ниже значение класса, тем более высокая точность измерительных приборов.

Виды электросчетчиков

Существует огромное количество различных электросчетчиков. Однако их всех можно разбить на три основных вида:

  • индукционные или механические;
  • электронные;
  • гибридные.

Механические устройства

Конструктивно индукционные счетчики выполнены следующим образом – между двух катушек, токовой и напряжения, находится алюминиевый диск, который механически связан со шкалой.

Принцип работы – ток, протекающий по катушкам, создает электромагнитное поле, которое заставляет вращаться диск. Он через червячную передачу передает свое вращение на механизм отсчета. Чем больший ток протекает через катушки, тем большая индуктивность электромагнитного поля, которое заставляет быстрее вращаться диск, а следственно и шкалу.

В классификации счетчиков индуктивные являются самыми неточными. Это обусловлено погрешностями, возникающими при преобразовании электромагнитного поля во вращение диска. А также довольно серьезные погрешности могут возникать и в механизме вращения шкалы.

Главным достоинством данного вида – низкая цена.

С электронным механизмом

Электронные приборы учета электроэнергии появились относительно недавно. Основаны они на измерении тока посредством аналоговых датчиков. Информация с датчиков поступает на микроконтроллер, где преобразуется и выводится на ЖК дисплей.

К достоинствам электронных относится:

  • Небольшие размеры.
  • Возможность настраивать несколько алгоритмов подсчета электроэнергии.
  • Самый высокий класс точности среди других видов из-за отсутствия большого числа элементов при измерении.
  • Возможность настроить систему АСКУЭ.

Главными недостатками являются высокая цена и большая чувствительность к скачкообразному изменению напряжения в сети.

Смешанные модели

Гибридные приборы, как видно из названия, являются комбинацией компонентов индуктивных и электронных счетчиков. Измерительная часть у них взята от механических, а обработка и вывод показаний осуществляется с помощью микроконтроллера.

Данный вид был создан с целью уменьшения цены на оборудование, которое можно было бы подключить в систему АСКУЭ. Данный вид нечувствителен к скачкам напряжения.

К недостаткам можно отнести большие размеры и невысокую точность по сравнению с электронными.

Определение коэффициента трансформации

Как было сказано выше, при подсчете затраченной электроэнергии важно знать коэффициент трансформации счетчика. Информацию о нем можно найти как в паспорте на счетчик электроэнергии, так и на лицевой панели прибора. Иногда в электронных приборах его можно найти в меню. Обозначается он либо через знак деления, либо просто числом. Обычно это значения из ряда 10, 20, 30 и 40.

Но нередки случаи, когда паспорт на оборудование отсутствует. В этом случае коэффициент трансформации можно высчитать самому. Для этого необходимо иметь либо два мультиметра, либо специальное оборудование.

В первом случае, одним мультиметром измеряется напряжение на первичной обмотке, вторым на вторичной. Важно помнить, что замеры делаются только на холостом варианте работы трансформатора, то есть без нагрузки. Ни в коем случае не следует превышать значение номинального напряжения, указанного в паспорте, так как это значительно увеличит погрешность.

Использование специального оборудования позволяет не использовать внешний источник питания, что существенно упрощается процедуру измерения.

Измеряя показатель трансформации, следует использовать измерительные приборы с классом точности не менее 0,5.

Видео по теме: Как посчитать потребление электроэнергии на счетчике с трансформаторами тока

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector