Трехфазное питание в доме: есть ли смысл
Трехфазное питание в доме: есть ли смысл?
Банальный вопрос: стоит ли подключать к частному дому трехфазовое питание? Как обычно, однозначного ответа нет: рассматриваем плюсы и минусы такого подключения.
Три фазы в доме: нужны они или можно обойтись?
Споры о том, какое электропитание лучше, однофазное или трехфазное, как вечное противостояние добра и зла в Игре Престолов — никогда не заканчиваются. Есть десятки аргументов за и против каждого варианта. Вы узнаете о том, какие есть преимущества и недостатки подключения трехфазного питания, что позволит вам принять продуманное взвешенное решение.
Что такое трехфазная сеть?
Любой дом или квартира перед вводом в эксплуатацию подключается к местной электросети. Такая сеть может быть однофазной или трехфазной. При однофазном подключении к дому подводится два провода, фаза и ноль, между которыми напряжение 220 В. Трехфазная же сеть характеризуется наличием четырех проводов: трех фаз и ноля. Между каждой фазой и нолем напряжение 220 В, а между самими фазами 380 В (как показано на изображении).
Для учета электроэнергии в такой сети необходим трехфазный счетчик, который устанавливается местным РЭСом. Типичным примером такого счетчика является INCOTEX Меркурий 231 АМ-01, предназначенный для учета активной электроэнергии.
Трехфазное питание: преимущества
Наличие трех фаз несет массу преимуществ владельцу частного дома или дачи. Вот некоторые из них:
- Увеличенный объем мощностей
С каждым годом количество бытовых электроприборов в каждом доме увеличивается, а значит увеличивается их суммарная мощность и нагрузка, которую они передают на электросеть. На сегодняшний день в России местные Облэнерго предлагают возможность оформления договора на потребление 5 кВт для однофазных сетей и 15 кВт для трехфазных.
Предположим у вас одна фаза и суммарная мощность всех электроприборов в вашем доме составляет 4 кВт. Но прошло время, и вы решили приобрести себе сварочный аппарат мощностью 3 кВт. Кстати о том, какой купить сварочный аппарат, можете прочитать здесь. В этом случае суммарная мощность составит 7 кВт, и одновременно все приборы вы использовать никак не сможете. А если в будущем планируется установка насосного оборудования или электрической отопительной системы, тогда стоит задуматься о подключении трехфазной сети.
- Равномерное распределение нагрузки
Благодаря работе одновременно трех фаз есть возможность равномерно распределить между ними нагрузку, чтобы избежать перекоса. Например, если вы регулярно занимаетесь сваркой в гараже, лучше всего это делать не на той фазе, к которой подключен телевизор, компьютерная техника или лампочки в доме. Можно подсчитать нагрузку по каждому бытовому прибору и пропорционально распределить их по фазам.
Также бывают случаи, когда из-за повышенной нагрузки (не по вашей вине) на определенных фазах происходит падение напряжения до 170 В или даже ниже. Зачастую это бывает, если дом находится на большом расстоянии от трансформаторной подстанции, и перед ним десятки других потребителей. В этом случае оборудование можно временно переключить на менее загруженную фазу, а когда перекос «уйдет», вернуть все на место.
- Работа трехфазного оборудования
Хотя большинство бытовых приборов работают от 220 В, все же существует оборудование для трехфазных сетей в 380 В. Можно выделить следующие виды такого оборудования:
- Насосные станции. Для некоторых глубинных и поверхностных насосных станций требуется 380 В.
- Трансформаторные сварочные аппараты.
- Отопительные котлы. Большинство отопительных электрических котлов имеют номинальную мощность в 7 — 9 кВт — однофазная сеть просто-напросто его бы не потянула. Например, для одноконтурного котла ЭВАН Warmos-IV-9.45 мощностью 9.45 кВт обязательно требуется три фазы.
- Возможность установки автоматов и УЗО с меньшими номинальными значениями
Благодаря тому, что на каждом фазном проводе в трехфазной сети будет меньшая нагрузка, чем на одной фазе в случае исполнения однофазного ввода, есть возможность установки автоматов защиты и УЗО с меньшими показателями токовой нагрузки. Например, если на каждой из фаз будут размещены приборы суммарной мощностью по 3 кВт, то для каждой фазы потребуются автомат, способный выдержать такую нагрузку:
3000/220 = 13.6 А (нагрузка по фазе)
Ближайший автомат по номиналу на 16 А. Для однофазного же питания при максимально возможной мощности в 5 кВт, потребуется автомат мощнее. То же правило действует и для устройств защитного отключения. Мы уже писали о том, как выбрать УЗО по мощности, поэтому не будем на этом останавливаться.
Недостатки трехфазного питания
У трехфазного питания существует также и несколько неприятных моментов, которые стоит учитывать перед подключением:
- Расходы на подключение и покупку оборудования
Если у вас уже заведен в дом однофазный ввод, то переподключение на трехфазный потребует дополнительных растрат. В такие растраты включается:
- Оформление договора. Согласно текущему законодательству оформление договора на установку трехфазного ввода и счетчика стоит 550 рублей.
- Покупка счетчика и проводов. Средняя стоимость трехфазного счетчика, внесенного в госреестр, составляет 1500 рублей. Также для ввода понадобится примерно 20 м изолированного кабеля СИП сечением 16 мм 2 , стоимостью 1200 рублей. Еще стоит учесть необходимость организации проводки внутри дома для трехфазного дома. Этот показатель сложно просчитать, так как все дома разные по площади.
- Дополнительные автоматы. Для каждой фазы потребуется свой автомат. Также потребуется установка реле контроля напряжения, чтобы можно было всегда «мониторить» напряжение по каждой фазе и в случае перекосов, переключаться между фазами.
Чтобы электромонтеры подключили вас к трехфазной сети, придется стать в очередь и пару недель подождать. Если не хотите ждать, то придется отдельно заплатить за срочность. В итоге подключение трехфазного питания выльется своему владельцу в кругленькую сумму.
- Увеличенные размеры щитовой
Для подключения трехфазного питания необходимо смонтировать крупногабаритную щитовую. Это обусловлено наличием дополнительного защитного и распределительного оборудования. Обычно такой силовой шкаф или щитовая устанавливается на улице, чтобы не занимала много места в доме.
Стоит отметить, что для распределительных щитов энергосбыт предъявляет определенные требования. Например, защита щитовой от пыли и грязи должна быть не ниже стандарта IP31, а во влажных помещениях IP54. Для некоторых владельцев дачных участков или частного дома поиск подходящего места для шкафа или монтаж такой конструкции может стать настоящим испытанием.
- Перепланировка проводки в доме
Если изначально в доме была одна фаза, то подключение еще двух потребует от хозяина глобальной перепланировки проводки. Так изначально все розетки и лампочки были «посажены» на одну фазу. С трехфазным подключением необходимо будет эти розетки переносить, а это означает немалый ремонт в доме, так как придется штробить стены под проводку. Естественно эта работа требует дополнительных затрат времени и денег.
Выводы
Итак, подключение трехфазной сети подойдет:
- Тем, кто хочет получить стабильное напряжение без перекосов. Если ваш дом находится далеко от трансформаторной подстанции, и вы страдаете от падения напряжения на фазе, тогда трехфазная сеть — это ваше спасение.
- Тем, кто приобрел трехфазное оборудование. Если планируется отопление в доме электрокотлом или установка насосной станции, тогда без напряжения в 380 В просто не обойтись.
- Тем, у кого бытовых приборов и электроники накопилось больше, чем на 5 кВт. Для таких потребителей есть смысл получить технические условия от энергосбыта на 10 — 15 кВт с возможностью подключения трехфазной сети.
Вам не нужны три фазы, если:
- У вас только однофазное оборудование суммарной мощностью не более 5 кВт и постоянное стабильное напряжение на одной фазе.
- Если вы не хотите делать у себя глобальный ремонт и переплачивать за дорогостоящее оборудование.
Как зарядить Tesla в домашних условиях
По информации сайта onliner.by
«Как заряжать?» — это, наверное, первейший вопрос, который возникает у человека, интересующегося покупкой электромобиля Tesla в Беларуси. Мы расскажем обо всех нюансах и особенностях зарядки Tesla.
Вспомним физику: вольты, амперы и киловатты
Для начала немного базовой информации об электрическом токе. Если вы хорошо учились в школе и знаете, чем вольты отличаются от амперов и киловаттов, можете смело пропустить эту информацию.
Емкость батареи автомобиля измеряется в киловатт-часах. Для примера возьмем популярный седан Tesla Model 3 с батареей на 82 кВт·ч. Это значит, что теоретически она может выдать мощность в 82 кВт в течение одного часа или, соответственно, 82 часа выдавать 1 кВт. Чтобы пополнить батарею, нужно сделать обратное — подать на нее 82 кВт в течение часа или 82 часа подавать на нее 1 кВт. Разумеется, в реальности существуют потери, и зарядка не всегда идет с одинаковой скоростью, но общая идея такая.
Ватт как единица мощности — это вольт (напряжение), умноженный на ампер (сила тока). Чтобы понять разницу между силой тока и напряжением, лучше всего подходит аналогия с водой. Напряжение — это, образно выражаясь, напор воды, а сила тока — диаметр трубы. Чтобы перекачать один и тот же объем воды (киловатт-часы), можно, к примеру, качать воду по узкой трубе с большим напором или по широкой трубе с малым напором.
Если труба широкая и с большим напором, то процесс наполнения идет быстро. В обратном случае — медленно. Для высокого напряжения нужна хорошая изоляция проводника (толстая стенка трубы), для большой силы тока — достаточное сечение кабеля (толщина трубы).
Зарядка от розетки в домашних условиях
Теперь поговорим о розетках. Обычная бытовая евророзетка имеет номинальное напряжение 220 В и максимальную силу тока, как правило, в 16 А или менее. Если умножить напряжение на силу тока, то есть 220 В × 16 А, мы получим максимальную мощность потребителя в 3520 Вт, или около 3,5 кВт.
Другой распространенный тип розетки — трехфазная, с межфазным напряжением 380 В (напряжение каждой фазы — те же 220 В). Она реже встречается в быту (обычно к ней подключают электроплиты), но повсеместно представлена на производстве, где используется мощное оборудование. Чаще всего трехфазная розетка имеет те же максимальные 16 А тока, что с учетом трех фаз дает нам 220 В × 16 А × 3 = 10,5 кВт. Эта розетка в евроисполнении имеет красный цвет и пять контактов, расположенных по кругу. Для удобства будем называть ее красной розеткой.
Бывают также однофазные розетки на 32 А (синего цвета), но у нас они встречаются крайне редко.
Tesla может заряжаться от любой из трех описанных розеток — евро, красной и синей. Последнюю в силу своей редкости мы рассматривать не будем. Перед тем, как перейти непосредственно к подключению Tesla в розетку, нужно вспомнить еще об одной детали. Поскольку в электросети используется переменный ток, а батарея электромобиля заряжается постоянным, его необходимо «выпрямить» c помощью зарядного устройства. То же самое происходит и тогда, когда вы заряжаете ноутбук или мобильный телефон. Только в случае с Tesla зарядное устройство установлено внутри автомобиля. Для Model 3 и Model Y оно имеет мощность 11 кВт, для Model S и Model X — 16 кВт. Говоря простым языком, скорость зарядки переменным током будет не больше 11 или 16 кВт за час.
Для подключения Tesla к розетке потребуется так называемый Mobile Connector, который по форме похож на зарядное устройство, хотя по факту это просто умный соединительный кабель. Раньше для рынка Европы в комплекте шли два адаптера: один для обычной евророзетки, другой — для трехфазной красной розетки. Но в настоящее время производитель комплектует автомобили лишь коннектором для евророзетки. Для зарядки от мощной трехфазной розетки придется докупать сторонние аксессуары.
В случае с Tesla для американского рынка все немного иначе. Они устроены так, что могут заряжаться только по одной фазе. Так что даже если подключить «американку» к трехфазной красной розетке, заряжаться она будет мощностью 3,5 кВт.
Так выглядит фирменный Mobile Connector
В автомобилях Tesla, предназначенных для Европы, спользуется два типа разъемов для зарядки. Model S и Model X имеют разъем типа Mennekes Type 2. Представленный в 2009 году, он был принят как единый европейский стандарт для электромобилей. На сегодняшний день его используют в Renault Zoe и BMW i3. Главное преимущество Type 2 — это возможность работать как с постоянным, так и переменным током, с одно- или трехфазной сетью. Кроме того, он намного безопаснее обычных разъемных соединений, так как передача энергии начинается только после того, как разъем полностью соединится и автомобиль с кабелем «договорятся» между собой о типе электрического тока и мощности зарядки. Европейская Model 3 оснащается разъемом CCS Combo 2, который поддерживает зарядку как постояным, так и переменным током. В случае с американской Tesla в машине будет находиться разъем собственной уникальной конструкции, более компактный, но не поддерживающий трехфазный ток.
Время зарядки
Теперь самое время поговорить о скорости зарядки в домашних условиях. Ниже мы свели в таблицу математические расчеты скорости зардки, но на практике время,которое электромобиль проведет у розетки, немного больше. Нужно учитывать потери энергии при передаче и тот факт, что не все электросети выдают заявленную мощность. Подсчитать время зарядки легко — нужно лишь разделить емкость батареи на мощность зарядки. Например, от евророзетки, которая выдает мощность 3,5 кВт, Tesla с батареей 82 кВтч будет заряжаться 23,4 часа. В реальности это время может быть немного больше. При мощности 11 кВт (у красной розетки) время зарядки сократится в три раза.
Важно знать, что заряжаться Tesla может только от заземленной розетки. В ином случае умный конектор просто не включит зарядку.
Если есть желание заряжаться в домашних условиях быстрее, чем это позволяет красная розетка, необходимо дополнительное оборудование. Одно зарядное устройство, установленное в автомобиле, по умолчанию позволяет заряжаться на мощности 11 или 16 кВт. Опциональное второе можно установить сразу на заводе или добавить позже, в этом случае максимальная мощность зарядки будет 22 кВт. Кроме того, необходимо будет установить High Power Wall Connector (HPWC), который является практически полным аналогом Mobile Connector, только установлен стационарно и имеет более толстый кабель.
Если для Америки HPWC является единственной альтернативой, то в Европе можно приобрести похожее устройство с разъемом Type 2 и соответствующий кабель. Но в случае с кабелем от сторонних производителей у вас не будет возможности открыть лючок зарядки нажатием на кнопку в кабеле. Придется открывать его с центрального экрана или с мобильного телефона через приложение, что не очень удобно. Мощность в 22 кВт позволит вам зарядиться полностью за 4 часа.
Но, пожалуй, самая большая проблема в случае с зарядкой на 22 кВт — это выделение соответствующей мощности. Если у вас нет возможности получить в месте стоянки автомобиля или в своем доме 22 кВт, второе зарядное устройство в машине и HPWC заказывать не имеет смысла. Для удобства в гараж лучше всего приобрести второй Mobile Connector и использовать его как стационарный, постоянно подключенный к розетке. А оригинальный возить с собой в багажнике на всякий случай, если потребуется зарядиться в дороге. Скорее всего, в пути вы будете заряжаться от обычной (если повезет с заземлением) или красной розетки.
Можно ли «сбросить удлинитель» из квартиры? Теоретически — да, практически — нет. Во-первых, в дождь или снег это будет небезопасно, во-вторых, зарядка от обычной розетки идет катастрофически долго. Поэтому чтобы нормально пользоваться электромобилем, установка трехфазной красной розетки рядом с постоянным местом парковки на работе или дома — это первоочередная задача, которой стоит озаботиться заранее. Как это сделать можно прочитать здесь.
Чтобы установить трехфазную розетку дома, вам, по-хорошему, необходимо будет сделать проект, пройти этапы согласований, смонтировать розетки, проложить кабели и, не исключено, установить дополнительный счетчик электроэнергии. Все это может взять на себя специализированная организация, которая занимается электрикой. В каждом отдельном случае будут варьироваться сроки, стоимость, доступность электрической мощности. Поэтому прежде чем думать о покупке электромобиля, вам обязательно нужно понять для себя, как вы будете решать вопрос с зарядкой.
Одним из приятных моментов, связанных с зарядкой Tesla, является наличие мобильного приложения для iOS и Android. Оно позволяет удаленно отслеживать статус автомобиля, его местоположение, управлять центральным замком, системой климат-контроля и, самое главное, следить за ходом зарядки. Можно в любом месте видеть, на какой мощности в данный момент заряжается машина и сколько времени осталось до завершения процесса.
Резюмируя, отметим вещи, о которых нужно помнить:
- зарядка от обычной евророзетки требует настоящего заземления и длится более суток;
- для нормальной эксплуатации нужна красная трехфазная розетка в гараже или на стоянке, которая позволяет зарядиться полностью за ночь (8 часов);
- второе зарядное устройство в автомобиле и HPWC особого смысла не имеют, разумнее купить второй Mobile Connector и использовать его как стационарный;
- автомобиль рассчитан на регулярную зарядку ночью, так же, как ваш мобильный телефон;
- вы не сможете заряжать американскую Model S от трехфазной розетки;
Подключение трехфазного двигателя к однофазной сети без потери мощности
Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: «треугольник», или «звезда», мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).
Кроме того, затруднён запуск двигателя под нагрузкой.
В предлагаемой статье описан метод подключения двигателя без потери мощности.
В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные «фазосдвигающие» устройства еще в большей степени снижают мощность на валу двигателей.
Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1.
Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору «помогает» дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.
На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.
К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.
Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.
При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.
Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.
Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.
Таблица 1
P, Вт | IC1=IL1, A | C1, мкФ | L1, Гн |
---|---|---|---|
100 | 0.26 | 3.8 | 2.66 |
200 | 0.53 | 7.6 | 1.33 |
300 | 0.79 | 11.4 | 0.89 |
400 | 1.05 | 15.2 | 0.67 |
500 | 1.32 | 19.0 | 0.53 |
600 | 1.58 | 22.9 | 0.44 |
700 | 1.84 | 26.7 | 0.38 |
800 | 2.11 | 30.5 | 0.33 |
900 | 2.37 | 34.3 | 0.30 |
1000 | 2.63 | 38.1 | 0.27 |
1100 | 2.89 | 41.9 | 0.24 |
1200 | 3.16 | 45.7 | 0.22 |
1300 | 3.42 | 49.5 | 0.20 |
1400 | 3.68 | 53.3 | 0.19 |
1500 | 3.95 | 57.1 | 0.18 |
В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.
Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20. 40°.
На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.
Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.
Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить
Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.
Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.
В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:
IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° — IL1cos30° = Iлsinφ,
получаем следующие значения этих токов:
IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).
При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.
На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.
Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85. 0,9.
Таблица 2
P, Вт | IC1, A | IL1, A | C1, мкФ | L1, Гн |
---|---|---|---|---|
100 | 0.35 | 0.18 | 5.1 | 3.99 |
200 | 0.70 | 0.35 | 10.2 | 2.00 |
300 | 1.05 | 0.53 | 15.2 | 1.33 |
400 | 1.40 | 0.70 | 20.3 | 1.00 |
500 | 1.75 | 0.88 | 25.4 | 0.80 |
600 | 2.11 | 1.05 | 30.5 | 0.67 |
700 | 2.46 | 1.23 | 35.6 | 0.57 |
800 | 2.81 | 1.40 | 40.6 | 0.50 |
900 | 3.16 | 1.58 | 45.7 | 0.44 |
1000 | 3.51 | 1.75 | 50.8 | 0.40 |
1100 | 3.86 | 1.93 | 55.9 | 0.36 |
1200 | 4.21 | 2.11 | 61.0 | 0.33 |
1300 | 4.56 | 2.28 | 66.0 | 0.31 |
1400 | 4.91 | 2.46 | 71.1 | 0.29 |
1500 | 5.26 | 2.63 | 76.2 | 0.27 |
В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.
Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.
Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.
Если же в магнитопровод ввести зазор порядка 0,2. 1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.
Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.
В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.
Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.
Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.
Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.
Таблица 3
Зазор в магнитопроводе, мм | Ток в сетевой обмотке, A, при соединении выводов на напряжение, В | ||
---|---|---|---|
220 | 237 | 254 | |
0.2 | 0.63 | 0.54 | 0.46 |
0.5 | 1.26 | 1.06 | 0.93 |
1 | — | 2.05 | 1.75 |
В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.
Таблица 4
Трансформатор | Номинальный ток, A | Мощность двигателя, Вт |
---|---|---|
ТС-360М | 1.8 | 600. 1500 |
ТС-330К-1 | 1.6 | 500. 1350 |
СТ-320 | 1.6 | 500. 1350 |
СТ-310 | 1.5 | 470. 1250 |
ТСА-270-1, ТСА-270-2, ТСА-270-3 | 1.25 | 400. 1250 |
ТС-250, ТС-250-1, ТС-250-2, ТС-250-2М, ТС-250-2П | 1.1 | 350. 900 |
ТС-200К | 1 | 330. 850 |
ТС-200-2 | 0.95 | 300. 800 |
ТС-180, ТС-180-2, ТС-180-4, ТС-180-2В | 0.87 | 275. 700 |
При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.
Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.
Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.
Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2. 3 В, что подтверждало высокую симметрию трехфазного напряжения.
Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.
В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.
К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.
Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.
Трехфазная или однофазная сеть в доме: что лучше?
При прокладке электропроводки в частном доме или на даче пользователи часто утверждают, что трехфазный тип электропитания гораздо лучше однофазного, так как можно подключить больше электрической техники. Многие специалисты спорят на эту тему, находя в трехфазной электропроводке как положительные, так и отрицательные стороны.
В нашей статье мы разберем плюсы и минусы использования трехфазной и однофазной сети в частном доме. И определим, в каких случаях нужна именно трехфазная.
Содержание
- Особенности однофазной сети
- Преимущества однофазного подключения
- Особенности трехфазной сети
- Преимущества трехфазного подключения
- Недостатки трехфазного ввода
- Вывод
Особенности однофазной сети
Любой коттеджный или дачный поселок, а также многоквартирный дом перед вводом в эксплуатацию подключается к местной электросети, которая является трехфазной. Далее на конкретного потребителя (на участок с домом или квартиру) выделяется одна из трех фаз или все три фазы. Давайте разберемся, что представляют собой эти два типа электропроводки. Начнём с однофазной.
Как правило, в квартирах или дачных домах электропитание потребителей выполняется через однофазную сеть мощностью 5 кВт. При этом в дом вводится электрическая цепь, состоящая из трех проводов: фазного (L), нейтрального (N) и защитного (РЕ) или заземляющего. По фазному проводу ток поступает к потребителю, а по нейтрали возвращается. Защитный проводник служит для предотвращения удара током.
Преимущества однофазного подключения
Рассмотрим преимущества однофазного подключения.
Преимущества | Описание |
Простой монтаж | Как было сказано выше, однофазная сеть имеет всего три провода. Поэтому монтаж однофазной сети не такой сложный, как прокладка трехфазной проводки. |
---|---|
Низкая стоимость | Для однофазной электросети требуются более дешевые составляющие: однофазные автоматические выключатели, УЗО, реле напряжения и т.д. |
Что касается недостатков однофазного подключения, то здесь можно выделить лишь его небольшую мощность и невозможность запитать трехфазных потребителей.
Особенности трехфазной сети
Трехфазная сеть в большинстве случаев встречается на производстве и предназначена для эксплуатации крупных трехфазных потребителей, которые имеют электродвигатели и рассчитаны на питание 380 В. Соответственно, и в быту такой вариант электросети позволяет запитать трехфазную нагрузку, например, варочную плиту или духовой шкаф, мощность которых может быть более 5 кВт.
В случае с трехфазной проводкой переменный ток подается уже по трем фазным проводам (L1, L2 и L3), а по нейтральному (N) возвращается. Также присутствует и заземляющий провод (РЕ). При этом между каждой фазой и нулем напряжение составляет 220 В, а 380 В проходит между самими фазами.
В трехфазной сети необходимо распределять нагрузку пропорционально, исключая перекос фаз. Например, если входная мощность составляет 15 кВт, то на каждой фазе будет по 5 кВт, соответственно.
Преимущества трехфазного подключения
Отметим основные преимущества трехфазной сети.
Преимущества | Описание |
Универсальное использование | К трехфазной сети можно подключать как однофазные нагрузки (220 В), так и электроустановки, работающие на линейном напряжении (380 В) – станков, сварочных аппаратов и другого специализированного электрооборудования большой мощности. |
---|---|
Подключение большого количества электроприборов | Более высокая выходная мощность – от 15 кВт, что позволяет подключить большое количество электроприборов. |
Рациональное распределение фаз | Для большого хозяйства ввод в частный дом трехфазной сети более рационален. Так как появляется выбор распределения 3 фаз между помещениями или потребителями в доме. Например, для домашней электропроводки можно использовать одну фазу, для мощной бытовой техники – вторую, а для подсобных помещений – третью. |
Недостатки трехфазного ввода
У трехфазного подключения есть и свои существенные недостатки. Рассмотрим их подробнее.
Недостатки | Описание |
Равномерное распределение нагрузки по фазам | Чтобы не случилось перекоса фаз, необходимо равномерно распределять однофазных потребителей по трем фазам. Поэтому при проектировании трехфазной электропроводки в частном доме требуется уделять большое внимание правильному распределению нагрузки. |
---|---|
Ограничение по мощности однофазных нагрузок. | Например, если выделенная мощность на дом составляет 15 кВт, то каждая фаза будет иметь по 5 кВт с максимальным током не более 22 А. В этом случае возникнет проблема в подключении более мощной однофазной нагрузки. |
Высокая стоимость | Проложить внутри дома трехфазную сеть будет значительно дороже, чем однофазную. Применение кабелей и проводов с большим количеством жил (каждая фаза должна разводиться отдельным кабелем), установка более модернизированного электрощита, трехфазного счетчика, автоматических выключателей, а также специальных аппаратов защиты – все это скажется на итоговой стоимости. |
Просадки сетевого напряжения | Некоторые пользователи считают, что при просадке одной из фаз, можно свободно пользоваться двумя другими. Но в этом случае их запросто можно перегрузить. Для безопасного переключения фаз понадобится электронный переключатель. |
Особенности подключения потребителей с трехфазными моторами | Для подключения потребителей с трехфазными моторами потребуется специальный прибор для поиска правильного чередования фаз (фазировки). Правда данную фазировку нужно соблюсти только на самом моторе при подключении. |
Вывод
Оба варианта электросети являются безопасными только при соблюдении всех необходимых требований при установке.
Как правило, в частном секторе пользователь может выбрать, какой тип электросети ему более приемлем. Но есть основной определяющий фактор – максимально разрешенная мощность, которая указывается в технических условиях на подключение дома к электросети. Например, если в СНТ есть ограничение на 5 кВт мощности (от самого СНТ или питающих сетей), то оно регламентировано исключительно на одну фазу. Как правило, это делается, чтобы было проще все дома СНТ разделить на 3 фазы (например, при 300 участках каждая фаза распределяется на 100 домов), точно зная, что ни один из этих домов не сможет потреблять более 5 кВт и перегружать какую-либо из фаз, вызывая перекос.
Трехфазная сеть позволить получить три фазы, но уже с каждой по 5 кВт, что втрое увеличит возможности (суммарно 15 кВт), и, опять же, каждая фаза остается ограниченной потреблением не более 5 кВт, что не позволит конкретному дому вызывать перекос.
Учитывая все положительные и отрицательные стороны трехфазной сети, её установка в доме необходима лишь в случаях, если планируется подключение:
- большого количества однофазных потребителей;
- мощных трехфазных нагрузок (например, отопительного оборудования или варочной панели);
- трехфазных электроинструментов (например, для организации в доме мастерской).
Если говорить об электрозащите, то как для трехфазной, так и однофазной сети многие пользователи устанавливают стабилизаторы напряжения, которые защищают нагрузку от нестабильного сетевого напряжения. Особенно это актуально для частных домов, коттеджей и дач, где часто встречается некачественное сетевое напряжение. Стабилизатор напряжения становится таким же неотъемлемым элементом электросистемы дома, как вводной автомат, УЗО или электросчетчик.