Sibprompost.ru

Стройка и ремонт
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрический счетчик мощность расчет

Электрический счетчик мощность расчет

Иногда необходимо определить мощность одного или нескольких потребителей электрической энергии. Такие измерения помогут определить, например, максимальную потребляемую мощность в доме или на производстве, чтобы правильно выбрать проводку, защиту и допустимую нагрузку на стабилизатор или преобразователь, можно узнать потребляемую мощность каждого из потребителей, если на время измерений отключить остальных потребителей электрической энергии.

В этих случаях обычно рекомендуется измерить потребляемый ток, и умножив его на напряжение рассчитать потребляемую мощность.

Но, для этого необходимо подключать амперметр, что не всегда удобно и безопасно. Однако, легко можно определить мощность с помощью счётчика электрической энергии.

Счётчик электрической энергии считает не мощность, а работу, точнее, количество израсходованной электрической энергии, которое учитывает внесистемной единицей измерения кВт.ч. Это значит, что потребитель энергии, мощностью в 1 кВт, мог на этой энергии работать один час. Эту мощность будем считать образцовой, с которой будем сравнивать, а значит определять фактически потребляемую мощность.

Если из сети потребляется мощность 1 кВт в течение часа, то за это время счётчик с диском совершает определённое количество оборотов диска, которое указывается на каждом счётчике. Число оборотов, которое делает счётчик при количестве потреблённой энергии в 1 кВт.ч., указывается на каждом счётчике и оно различается у разных типов счётчиков.

Определение мощности счётчиком можно сделать двумя способами. По первому способу нужно назначить количество оборотов и отмерять время, за которое счётчик сделает один или несколько оборотов, а затем сравнивать результат с принятым образцом. Засекать время можно, например, за одну минуту, за пять, десять или сколько угодно. Чем больше время, тем больше будет точность вычислений.

На любом счётчике имеется надпись, за сколько оборотов он насчитает 1 кВт. ч. электрической энергии. У разных типов счётчиков это число может быть разным. Для примера возьмём электрический счётчик, которые сделает 240 оборотов при потреблённой мощности 1 кВт.ч. Такое количество энергии израсходует потребитель мощностью в 1кВт за один час или в секундах за 3600 сек. Посчитаем, за сколько времени такой потребитель сделает один оборот.

3600 с : 240 об. = 15 с.

Если реальная фактическая мощность потребителя будет в n раз больше, то во столько же раз будет больше скорость вращения, а значит меньше время полного оборота диска. При меньшей мощности время необходимое для совершения одного полного оборота будет больше.

Предположим, что диск сделал оборот за 5 с, тогда пишем соотношение мощностей и скорости вращения и подставляем значения.

Расчёт мощности счётчиком по скорости вращения диска:

Тобразцовое : Тфактическое = 15 : 5 = 3 кВт

Значит, в данном случае рассчитанное время одного оборота при мощности в 1 кВт делим на фактическую скорость и получаем значение мощности в кВт. Как вариант этого способа, можно отмерять время не для одного, а для большего числа оборотов, тогда измерения будут точнее.

Однако, у этого способа есть небольшой недостаток. Не всегда есть под рукой секундомер или часы, по которым можно точно отмерять секунды, доли секунд. Тогда расчёт мощности делаем по второму способу. Считаем обороты, которые сделает счётчик за одну или несколько минут. В нашем случае счётчик, который делает 240 оборотов в час (за 60 минут), делает за одну минуту четыре оборота. Для большей точности будем считать обороты, например, за пять минут. За это время при мощности 1 кВт, счётчик за 5 минут должен сделать 20 оборотов. Если за это время счётчик сделал, например, 30 оборотов, то фактическую мощность определяем по другой формуле.

Читайте так же:
Счетчик электроэнергии с тарификатором

Расчёт мощности счётчика по числу оборотов диска:

Nфактическое : Nобразцовое = 30 : 20 = 1,5 кВт.

Этот способ будет точнее при большей скорости вращения диска счётчика или для точности измерять в течение большего времени.

Электронные счётчики не имеют диска вращения, но у них есть светодиод, который мигает чаще, чем больше потребляемая мощность. У них вместо количества оборотов считаем количество миганий светодиода и определяем мощность по тем же формулам.

1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>

Как узнать расход электроэнергии по миганию электронного счетчика

Новые модели электронных счётчиков позволяют оценить потребление энергии по количеству вспышек индикатора. Благодаря этому можно узнать мощность, потребляемую различными приборами, имеющимися в доме, а также выявлять их неисправности.

Что нужно для оценки

Для точной оценки энергопотребления по миганию нужно узнать коэффициент пересчёта или передаточное число. Оно характеризует, сколько импульсов (вспышек светодиода) соответствуют одному киловатт-часу израсходованной энергии. Этот показатель приведен на лицевой стороне устройства учета или же в документации.

Если такие сведения отсутствуют, коэффициент пересчета можно определить самому. Для этого нужно дождаться, когда на правом крайнем барабанчике счётчика появится ноль. Затем в сеть включают прибор с невысокой расходуемой мощностью, например, телевизор и люстру с несколькими лампочками.

В этот момент следует начать считать количество вспышек лампочки на устройстве учета. Процесс проводится до тех пор, пока крайний правый барабан не покажет цифру 1. Вслед за этим нужно записать или запомнить количество миганий за этот период, а затем умножить его на 10.

Например, если было засчитано 64 вспышки, то коэффициент составит 64 имп./0,1 кВт-ч. Значит, 1 киловатт-часу соответствует 640 миганий. После этого можно приступать непосредственно к определению энергопотребления по вспышкам индикатора.

Ручной расчет

Теперь можно вычислить мощность, потребляемую конкретным устройством, по миганию электросчётчика. Перед тем, как сделать это, нужно подготовиться. Для этого нужно выключить в доме все приборы, кроме проверяемого. Светодиод устройства учета при этом мигать не должен. Затем понадобится секундомер или часы с секундной стрелкой, после чего начинается процедура ручного расчета.

В течение минуты потребуется рассчитать количество вспышек индикатора на счетчике. Полученное значение вновь нужно записать или запомнить. Потребляемая мощность рассчитывается таким образом:

  1. Высчитанное количество импульсов делится на коэффициент пересчета.
  2. Полученное значение умножается на 1000.
  3. В результате получится средняя мощность, потребляемая прибором, в ваттах.

Например, если на рассматриваемом счетчике светодиод моргнул 32 раза за 1 минуту, то конкретный прибор потребляет 500 ватт.

Специальные приложения

Ручной расчет расхода электроэнергии по индикатору счетчика — процесс непростой, поскольку существует вероятность возникновения ошибки. Результаты в таком случае могут оказаться неточными. Для решения этой проблемы было создано мобильное приложение «Проверка однофазного счетчика». Оно пригодится тем, у кого есть старый или новый прибор учета. С помощью этого приложения можно рассчитать потребляемую мощность электронных устройств.

Читайте так же:
Расчет для общедомовых счетчиках электричества

Для этого в окне программы выбирается из списка передаточное число прибора учета. Затем вводится число импульсов, которое нужно отсчитать, нажимается и удерживается кнопка запуска. Когда светодиод вспыхнет заданное количество раз, нужно отпустить кнопку. В этот момент можно рассчитать расход энергии. С помощью расcмотренного приложения также определяется точность счетного механизма.

Еще одно приложение для подсчета потребления с помощью смартфона — iStrohm. Среди достоинств программы – русскоязычный интерфейс и простота использования. Для подсчета потребуется ввести передаточное число и нажимать на специальную кнопку на экране каждый раз, когда индикатор на счетчике мигает.

Мощность, потребляемая конкретным прибором, отобразится в соответствующем поле. Стоит отметить, что другие приложения для работы с приборами учета электроэнергии обладают не настолько богатым функционалом, по сравнению с рассмотренными.

Таким образом, узнать расход энергии по миганию счетчика можно без особого труда путем ручного подсчета или с помощью смартфона. Это позволит обойтись без специального оборудования, вызова электрика или вмешательства в проводку.

Электрический счетчик мощность расчет

Счетчик электрической энергии применяется для подсчета использованного количества электроэнергии в быту, на предприятиях, а также для измерения выработанной энергии.

Киловатт-час (кВт · ч) – это единица измерения внесистемная и характеризует выполненную работу. Один киловатт-час равен количеству энергии, которая используется потребителем за один час времени. Можно расписать в следующем виде:

Для лучшего понимания работы электрического счетчика приведем пример:

Если электрочайник мощностью 2кВт будет работать 10 минут, то счетчик электрической энергии намотает:

По конструкции счетчики электрической энергии разделяют:

— Индукционный счетчик (электромеханический) – электрический измерительный прибор, в котором неподвижные катушки (подсоединены последовательно и параллельно нагрузке) создают вращающее магнитное поле, которое приводит в движение токопроводящий диск.

Диск обычно изготовляется из алюминия или латуни, количество его оборотов пропорционально показанию электрического счетчика. Вращения диска передаются на счетный механизм. Принцип работы индукционного счетчика изображен на блок-схеме (рисунок 1):

Рисунок 1 – Принцип работы индукционного счетчика

Угол сдвига между потоком напряжения и тока должен быть равен 90 электрических градусов, в противном случае индукционный электрический счетчик будет производить неправильные измерения, с большой погрешностью. Для регулировки угла в счетчиках применяют специальные шунты.

Принцип работы такого счетчика аналогичен принципу работы асинхронного двигателя, соответственно, он может вращаться как в одну сторону, так и в другую, необходимо только сменить направление тока в одной из его обмоток.

Электрические счетчики — это единственные индукционные измерительные приборы, которые поступили в массовое производство и эксплуатацию.

— Электронный счетчик – состоит из электроники, в нем ток и напряжение действуют на твердотельные элементы, последними создаются импульсы, которые счетное устройство воспринимает. Количество этих импульсов прямо пропорционально количеству энергии, которая проходит через прибор за единицу времени.

— Гибридный (смешанный) используется редко, основан на работе двух вышеупомянутых приборов. В основном это индукционный электрический счетчик с электронным дисплеем. Наличие электромеханической связи оставляет в нем ряд недостатков.

Читайте так же:
Поверка трехфазного электрического счетчика

Электрические счетчики, в зависимости от их назначения, могут измерять активную, реактивную мощности, которые являются составляющими полной мощности.

Индукционные счетчики, которые у большинства из нас установлены дома, измеряют активную мощность.

Недостатки индукционных счетчиков:

— большая ошибка измерений, в основном в пределах 2%;

— требуются частые поверки прибора;

— отсутствие дистанционного снятия показаний;

— слабая защита от хищения электрической энергии;

— отсутствие возможности многотарифности.

Из-за наличия столь весомых недостатков индукционные счетчики вытесняются электронными, которые имеют следующие преимущества:

— наличие многотарифности (фиксация показаний счетчика в разных временных отрезках; так, например, ночью цена на электроэнергию значительно меньше);

— высокий класс точности;

— возможность измерения как активной, так и реактивной мощности;

— наличие дистанционного снятия показаний;

— улучшенная защита от краж энергии.

Каждый электронный счетчик ведет подсчет электроэнергии по своему алгоритму, резкие скачки тока, перепады напряжений — все это может повлиять на качество снятия показаний.

На предприятиях уже давно введен многотарифный подсчет электроэнергии. Ведь в зависимости от времени суток цена на электричество очень сильно меняется, то есть используя многотарифные электрические счетчики, — предприятия экономят. Но наше государство не очень считается с жителями, и поэтому учет энергии дома ведется по единому тарифу, что в принципе – несправедливо. А вот почему нас – мирных жителей еще не заставили оплачивать реактивную энергию, остается загадкой, думаю, в скором будущем, добровольно-принудительно будут установлены в квартирах и счетчики реактивной энергии. Предприятия уже давно оплачивают реактивную энергию, и в целях экономии, стараются производить ее компенсацию. Компенсаторы реактивной энергии часто применяются и имеют большое разнообразие.

Коэффициент мощности

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей и мощности искажения (собирательное название — неактивная мощность). Следует отличать понятие «коэффициент мощности» от понятия «косинус фи», который равен косинусу сдвига фазы переменного тока, протекающего через нагрузку, относительно приложенного к ней напряжения. Второе понятие используют в случае синусоидальных тока и напряжения, и только в этом случае оба понятия эквивалентны.

Содержание

  • 1 Определение и физический смысл
  • 2 Прикладной смысл
  • 3 Математические расчёты
  • 4 Типовые оценки качества электропотребления
    • 4.1 Несинусоидальность
  • 5 Коррекция коэффициента мощности
    • 5.1 Разновидности коррекции коэффициента мощности
  • 6 Ссылки

Определение и физический смысл [ править | править код ]

Коэффициент мощности равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. В случае синусоидальных тока и напряжения полная мощность представляет собой геометрическую сумму активной и реактивной мощностей. Иными словами, она равна корню квадратному из суммы квадратов активной и реактивной мощностей. В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

В электроэнергетике для коэффициента мощности приняты обозначения cos ⁡ φ varphi > (где φ — сдвиг фаз между силой тока и напряжением) либо λ . Когда для обозначения коэффициента мощности используется λ , его величину обычно выражают в процентах.

Читайте так же:
Счетчик однофазный сколько поверка

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (или от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения (в общем случае бесконечномерных). Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

В случае синусоидального напряжения, но несинусоидального тока, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой.

При наличии реактивной составляющей в нагрузке, кроме значения коэффициента мощности, иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

Прикладной смысл [ править | править код ]

Можно показать, что если к источнику синусоидального напряжения (например, розетка

230 В, 50 Гц) подключить нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку с реактивной составляющей от электростанции требуется больше отвода тепла, чем при работе на активную нагрузку; избыток передаваемой энергии выделяется в виде тепла в проводах, и в масштабах, например, предприятия потери могут быть довольно значительными.

Не следует путать коэффициент мощности и коэффициент полезного действия (КПД) нагрузки. Коэффициент мощности практически не влияет на энергопотребление самого устройства, включённого в сеть, но влияет на потери энергии в идущих к нему проводах, а также в местах выработки или преобразования энергии (например, на подстанциях). То есть счётчик электроэнергии в квартире практически не будет реагировать на коэффициент мощности устройств, поскольку оплате подлежит лишь электроэнергия, совершающая работу (активная составляющая нагрузки). В то же время от КПД непосредственно зависит потребляемая электроприбором активная мощность. Например, компактная люминесцентная («энергосберегающая») лампа потребляет примерно в 1,5 раза больше энергии, чем аналогичная по яркости светодиодная лампа. Это связано с более высоким КПД последней. Однако независимо от этого каждая из этих ламп может иметь как низкий, так и высокий коэффициент мощности, который определяется используемыми схемотехническими решениями.

Математические расчёты [ править | править код ]

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Если его снижение вызвано нелинейным, и особенно импульсным характером нагрузки, это дополнительно приводит к искажениям формы напряжения в сети. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Для расчётов в случае гармонических переменных U (напряжение) и I (сила тока) используются следующие математические формулы:

  1. χ = P S >>
  2. P = U × I × cos ⁡ φ
  3. Q = U × I × sin ⁡ φ
  4. S = ∑ k = 1 ∞ ( U ) × I = P 2 + Q 2 + T 2 ^displaystyle (U)times I=+Q^<2>+T^<2>>>>

Здесь P — активная мощность, S — полная мощность, Q — реактивная мощность, T — мощность искажения.

Типовые оценки качества электропотребления [ править | править код ]

Значение
коэффициента
мощности
ВысокоеХорошееУдовлетворительноеНизкоеНеудовлетворительное
cos ⁡ φ varphi > 0,95…10,8…0,950,65…0,80,5…0,650…0,5
λ 95…100 %80…95 %65…80 %50…65 %0…50 %

При одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.

Например, большинство старых светильников с люминесцентными лампами для зажигания и поддержания горения используют электромагнитные балласты (ЭмПРА), характеризующиеся низким значением коэффициента мощности, то есть неэффективным электропотреблением. Многие компактные люминесцентные («энергосберегающие») лампы, имеющие ЭПРА, тоже характеризуются низким коэффициентом мощности (0,5…0,65). Но аналогичные изделия известных производителей, как и большинство современных светильников, содержат схемы коррекции коэффициента мощности, и для них значение cos ⁡ φ varphi > близко к 1, то есть к идеальному значению.

Несинусоидальность [ править | править код ]

Низкое качество потребителей электроэнергии, связанное с наличием в нагрузке мощности искажения, то есть нелинейная нагрузка (особенно при импульсном её характере), приводит к искажению синусоидальной формы питающего напряжения. Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях.

Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы, импульсные источники питания и др.

Коррекция коэффициента мощности [ править | править код ]

Коррекция коэффициента мощности (англ. power factor correction , PFC) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам.

К ухудшению коэффициента мощности (изменению потребляемого тока непропорционально приложенному напряжению) приводят нерезистивные нагрузки: реактивная и нелинейная. Реактивные нагрузки корректируются внешними реактивностями, именно для них определена величина cos ⁡ φ . Коррекция нелинейной нагрузки технически реализуется в виде той или иной дополнительной схемы на входе устройства.

Данная процедура необходима для равномерного использования мощности фазы и исключения перегрузки нейтрального провода трёхфазной сети. Так, она обязательна для импульсных источников питания мощностью в 100 и более ватт [ источник не указан 3814 дней ] . Компенсация обеспечивает отсутствие всплесков тока потребления на вершине синусоиды питающего напряжения и равномерную нагрузку на силовую линию.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector