Sibprompost.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Закон Джоуля-Ленца

Закон Джоуля-Ленца

О чем эта статья:

8 класс, 10 класс

Закон Джоуля-Ленца

На примере многих бытовых приборов понятно, что если через участок цепи проходит электроток и при этом не совершается какая-либо работа, то происходит нагревание проводника. Иногда оно идет на пользу — например, в лампе накаливания или в аппарате дуговой сварки. Но в других случаях тепловой эффект нежелателен — например, перегрев электрической проводки в здании может вызвать пожар. Поэтому в наших интересах управлять таким эффектом, и правило Джоуля-Ленца определяет, от чего зависит тепловое действие тока.

Правило было сформулировано в результате опытов двух ученых — англичанина Джеймса Прескотта Джоуля и российского физика Эмилия Христиановича Ленца. Поскольку ученые работали независимо друг от друга, новый закон назвали двойным именем.

Закон Джоуля-Ленца кратко: нагревание проводника или полупроводника прямо пропорционально его сопротивлению, времени действия тока и квадрату силы тока.

Поскольку сопротивление проводника определяют такие характеристики, как его длина, площадь и проводимость, верны следующие утверждения:

количество теплоты в проводнике снижается при увеличении площади его сечения;

тепловой эффект снижается при уменьшении длины проводника.

Это легко проиллюстрировать, подключив к источнику питания две лампы с разным сопротивлением вначале последовательно, а после — параллельно. При последовательном подключении лампа с большим сопротивлением будет светить ярче, а при параллельном — наоборот.

Природа тепла в проводниках

Разберемся, как происходит нагрев проводника и каким образом этот процесс отвечает формулировке законе Джоуля-Ленца. Как известно, электрический ток представляет собой направленный поток электронов, если речь идет о металлах, и направленный поток ионов — если о растворах электролитов. Проводником называют такой металл, в котором много свободных электронов.

При подключении проводника к сети электроны начинают двигаться в одном направлении под действием электрического поля. При движении они сталкиваются с атомами проводника и передают им свою кинетическую энергию. Чем выше скорость заряженных частиц, тем чаще происходят такие столкновения и больше выделяется кинетической энергии. Часть этой энергии трансформируется в тепло, поэтому проводник нагревается.

Высокая сила тока означает, что через сечение проводника проходит много свободных электронов и столкновения происходят часто. Соответственно, частицам проводника передается много энергии, и он греется сильнее. Именно поэтому в законе Ленца-Джоуля говорится о том, что количество выделяемой теплоты пропорционально квадрату силы тока.

Теперь представим, что сечение проводника увеличилось. Конечно, столкновений частиц будет меньше, а значит — выделится меньше тепла. Вспоминаем, что удельное сопротивление проводника обратно пропорционально его сечению. Чем меньше сечение материала, тем выше его сопротивление и тем сильнее он нагревается. Вот мы и описали тепловое действие тока в соответствии с законом Джоуля-Ленца.

Уравнение Джоуля-Ленца

Посмотрим, как данный закон выражается в математическом виде. Допустим, на некоем участке цепи проходит электрический ток и вызывает нагревание проводника. Если на этом участке нет каких-либо механических процессов или химических реакций, требующих энергозатрат, выделенная проводником теплота Q равна работе тока A.

Q = A

Поскольку А = IUt, где I — сила тока, U — напряжение, а t — время, Q = IUt.

Теперь вспомним, что напряжение можно выразить через сопротивление и силу тока U = IR. Подставим это в формулу:

Q = IUt = I(IR)t = I 2 Rt

Q = I 2 Rt

Мы выразили количество теплоты в проводнике через сопротивление — эта формула для закона Джоуля-Ленца называется интегральной.

Но бывает так, что сила электрического тока неизвестна, зато есть информация о напряжении на участке цепи. В таком случае нужно использовать закон Ома:

I = U/R

Исходя из этого, закон Джоуля-Ленца можно записать в виде дифференциальной формулы:

Напомним, что такое уравнение, как и предыдущее, верно только в том случае, когда вся работа электрического тока уходит на выделение тепла и нет других потребителей энергии.

Итак, у нас есть две формулы для определения количества теплоты, выделяемой проводником при прохождении через него электричества:

При расчетах используют следующие единицы измерения:

Читайте так же:
Открытый урок тепловое действие электрического тока

количество тепла Q— в джоулях (Дж);

силу тока I — в амперах (А);

сопротивление R — в омах (Ом);

время t — в секундах (с).

Практическое применение

Применение на практике закона Джоуля-Ленца заключается в том, что тепловым действием электрического тока можно управлять, подбирая проводники с нужным сопротивлением. К примеру, для электрических нагревательных приборов, которые должны выделять максимум тепла, выбирают проводники с высоким сопротивлением.

Низкое сопротивление, напротив, позволяет проводнику практически не нагреваться при прохождении тока. Поэтому на промышленных предприятиях с усиленными требованиями к пожаробезопасности для прокладки линий электропередач используется медный кабель. Удельное сопротивление меди сечением 1 мм 2 равно 0,0175 Ом, в то время как у алюминия оно составляет 0,0271 Ом. Медь практически не нагревается, чем снижает риск возгораний.

Примеры задач

Задача 1

Электроплита подключена к сети с напряжением 220 В. Какое количество тепла выделит ее нагревательный элемент за 50 минут, если известно, что сила тока в цепи составляет 10 А.

Решение:

t = 50 мин = 3000 с;

Для того, чтобы рассчитать количество тепла, в данном случае подойдет интегральная формула Джоуля-Ленца Q = I 2 Rt, однако мы не знаем, чему равно сопротивление R. Однако согласно закону Ома R = U/I.

Вычислим сопротивление: R = U/I = 220/10 = 22 Ом.

Подставим имеющиеся данные в формулу:

Q = I 2 Rt = 10 2 × 22 × 3000 = 6 600 000 Дж = 6,6 МДж.

Ответ: плита выделит 6,6 мегаджоулей тепла.

Задача 2

Для обогрева дома требуется, чтобы отопительный прибор выделял 125 кДж тепла в час. Напряжение в электрической сети составляет 220 В. Каким должно быть электрическое сопротивление проводника, чтобы обеспечить данную теплоотдачу?

Решение:

Q = 125 Дж = 125 000 Дж;

В данном случае подойдет уравнение

Ответ: сопротивление проводника 1393,92 Ом.

Тепловое действие электрического тока

Средняя оценка: 4.7

Всего получено оценок: 91.

Средняя оценка: 4.7

Всего получено оценок: 91.

Одним из явлений, происходящих при прохождении электрического тока по проводнику, является выделение энергии в виде тепла. Рассмотрим тепловое действие электрического тока более подробно.

Тепловое действие электрического тока

Еще в девятнадцатом веке опыты по изучению проводимости свидетельствовали, что ток, проходящий по нагрузке, нагревает ее. Исследования показали, что нагревается не только нагрузка, но и проводники.

Рис. 1. Тепловое действие электрического тока.

Данный факт легко объясним, если вспомнить, что электрический ток – это перемещение зарядов в веществе нагрузки. При движении заряды взаимодействуют с ионами кристаллической решетки, и отдают им часть энергии, которая и переходит в тепло.

Закон Джоуля-Ленца

Поскольку разность потенциалов (напряжение) на нагрузке равна работе, которую совершит единичный заряд, двигаясь по нагрузке, то для вычисления работы тока, необходимо напряжение умножить на заряд, прошедший через нагрузку. Заряд же равен произведению тока, проходящего по нагрузке, на время прохождения. Таким образом:

Детальным изучением теплового действия электрического тока в середине XIXв занимались независимо Д.Джоуль (Великобритания) и Э.Ленц (Россия).

Рис. 2. Джоуль и Ленц.

Было выяснено, что если нагрузка неподвижна, то вся работа электрического тока в этой нагрузке перейдет в тепло:

Как правило, напряжение на элементах электрической цепи различно, а ток в ней общий. Поэтому для определения теплового действия удобнее выразить напряжение через ток, учитывая сопротивление:

То есть, количество тепла, образующееся в нагрузке, равно произведению значения тока в квадрате, сопротивления и времени. Этот вывод носит название Закона Джоуля-Ленца.

Иногда ток нагрузки неизвестен, но известно ее сопротивление и подводимое напряжение. В этом случае удобнее выразить ток через известные величины:

и, подставив в формулу выше, получаем:

Из данной формулы можно видеть интересный факт – если в нагревательной плите сгорит часть спирали, и мы просто исключим сгоревшие места, то сопротивление спирали уменьшится, а поскольку напряжение сети останется прежним, то тепло, выделяемое плитой, возрастет. Мощность плитки увеличится.

Использование теплового действия электричества

Тепловое действие электрического тока находит широкое применение, в первую очередь, в нагревательных приборах.

Читайте так же:
Мощность тепловых потерь источника тока

Еще одним важным направлением использования теплового действия являются плавкие предохранители. Если необходимо отключить электрическую цепь при превышение допустимого тока, то в цепь можно включить плавкий предохранитель.

Рис. 3. Устройство плавкого предохранителя.

Это небольшая колба из негорючего материала, внутри которой проходит плавкая проволочка или лента, сопротивление которой рассчитано так, чтобы при превышении предельного тока она расплавилась, тем самым разорвав электрическую цепь.

Что мы узнали?

Вся работа тока в неподвижной нагрузке превращается в тепло. Тепловое действие электрического тока по закону Джоуля Ленца пропорционально квадрату тока, сопротивлению и времени. Данное явление широко применяется в плавких предохранителях и нагревательных приборах.

Тепловое действие тока Закон Джоуля-Ленца Электронагревательные приборы Лисовская Ирина Александровна, учитель физики ГБОУ гимназия 148 имени Сервантеса, — презентация

Презентация была опубликована 7 лет назад пользователемДемид Панкрашкин

Похожие презентации

Презентация на тему: » Тепловое действие тока Закон Джоуля-Ленца Электронагревательные приборы Лисовская Ирина Александровна, учитель физики ГБОУ гимназия 148 имени Сервантеса,» — Транскрипт:

1 Тепловое действие тока Закон Джоуля-Ленца Электронагревательные приборы Лисовская Ирина Александровна, учитель физики ГБОУ гимназия 148 имени Сервантеса, г.Санкт-Петербург

2 Верите ли вы, что 2 ученых, работающих в разных странах и не знакомые друг с другом, почти одновременно сделали одно и то же открытие? Физический закон носит имена владельца пивоваренного завода и ректора Санкт-Петербургского университета? В конце 19 века Россию называли родиной света? Электрическая лампа чаще перегорает в момент замыкания тока и очень редко в момент размыкания? Наибольший расход электроэнергии в наших квартирах приходится на освещение?

3 Интерактивный тренинг на знание формулы мощности электрического тока collection.edu.ru/dlrstore/669ba075-e dc-95ff c9a66/3_19.swf collection.edu.ru/dlrstore/669ba075-e dc-95ff c9a66/3_19.swf 6 стр

10 Работа с учебником Как можно объяснить нагревание проводника электрическим током? Попробуйте сформулировать это в виде ключевых словосочетаний 1. Эл. поле совершает работу по перемещению свободных зарядов 2. Взаимодействие направленно движущихся свободных зарядов с ионами вещества 3. Передача энергии ионам 4. Работа тока приводит к увеличению внутренней энергии проводника 5. Если проводник неподвижен, то А тока = Q. Значит Q = UIt

11 collection.edu.ru/dlrstore/669ba076-e dc-95ff c9a66/3_20.swf collection.edu.ru/dlrstore/669ba076-e dc-95ff c9a66/3_20.swf 3 стр. и 4 стр.

12 Степень нагрева проводника зависит от его СОПРОТИВЛЕНИЯ При последовательном соединении I = const, Q = I 2 Rt, (чем больше R, тем больше Q) значит сильнее нагреется проводник с большим сопротивлением При параллельном соединении U= const, Q = U 2 t/R, ( чем меньше R, тем больше Q) значит сильнее нагреется проводник с меньшим сопротивлением

S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при тако» title=»Задача 1 группе ι – длина проводника; ι 1 = ι 2 ρ – удельное сопротивление проводника ; ρ 1 = ρ 2 S — площадь поперечного сечения проводника; S 1 > S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при тако» > 13 Задача 1 группе ι – длина проводника; ι 1 = ι 2 ρ – удельное сопротивление проводника ; ρ 1 = ρ 2 S — площадь поперечного сечения проводника; S 1 > S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при таком их соединении 1 2 S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при тако»> S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при таком их соединении 1 2″> S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при тако» title=»Задача 1 группе ι – длина проводника; ι 1 = ι 2 ρ – удельное сопротивление проводника ; ρ 1 = ρ 2 S — площадь поперечного сечения проводника; S 1 > S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при тако»>

14 Решение задачи 1 группы 1.Проводники соединены параллельно, значит U 1 = U 2 = const. Q = Ult, Q = Ut (U/ R), т.е Q = U 2 t/R (Q обратно пропорционально R) Значит проводник с МЕНЬШИМ сопротивлением выделит БОЛЬШЕЕ количество теплоты) 2. R = ρι/S, (R обратно пропорционально S при прочих равных условиях) Поскольку S 1 > S 2, значит R 1 S 2, значит R 1

S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при тако» title=»Задача 2 группе ι – длина проводника; ι 1 = ι 2 ρ – удельное сопротивление проводника ; ρ 1 = ρ 2 S — площадь поперечного сечения проводника; S 1 > S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при тако» > 15 Задача 2 группе ι – длина проводника; ι 1 = ι 2 ρ – удельное сопротивление проводника ; ρ 1 = ρ 2 S — площадь поперечного сечения проводника; S 1 > S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при таком их соединении 1 2 S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при тако»> S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при таком их соединении 1 2″> S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при тако» title=»Задача 2 группе ι – длина проводника; ι 1 = ι 2 ρ – удельное сопротивление проводника ; ρ 1 = ρ 2 S — площадь поперечного сечения проводника; S 1 > S 2 t – время протекания тока; t 1 = t 2 Сравните количества теплоты, выделяемые проводниками при тако»>

Читайте так же:
Если провод теплого пола длинный

16 Решение задачи 2 группы 1.Проводники соединены последовательно, значит l 1 = l 2 = const. Q = Ult, Q = lt ( lR ), т.е Q = l 2 Rt (Q прямо пропорционально R) Значит проводник с БОЛЬШИМ сопротивлением выделит БОЛЬШЕЕ количество теплоты и наоборот) 2. R = ρι/S, (R обратно пропорционально S при прочих равных условиях) Поскольку S 1 > S 2, значит R 1 S 2, значит R 1

17 Задача 3 группе В цепь включены параллельно медная и стальная проволоки равной длины и сечения. В какой из проволок выделится большее количество теплоты за одно и то же время?

18 Решение задачи 3 группы 1.Пусть 1 проводник медный, а 2 стальной. Проводники соединены параллельно, значит U 1 = U 2 = const. Q = Ult, Q = Ut (U/ R), т.е Q = U 2 t/R (Q обратно пропорционально R) Значит проводник с МЕНЬШИМ сопротивлением выделит БОЛЬШЕЕ количество теплоты) 2. R = ρι/S, (R прямо пропорционально ρ при прочих равных условиях) Поскольку ρ 1

19 Ответьте на вопросы 1.Как изменится количество теплоты, выделяемое проводником с током, если силу тока в проводнике увеличить в 2 раза? (увеличится в 4 раза, поскольку Q = l 2 Rt, т.е. Q = (2l) 2 Rt, Q = 4l 2 Rt ) 2.2 лампы, соединённые последовательно, подключены к источнику тока. Сопротивление первой лампы меньше, чем у второй. Какая лампа будет гореть ярче при замыкании цепи? (вторая лампа, т.к. при последовательном соединении Q = l 2 Rt, ( т.е. Q

R),токи в лампах одинаковы, больше тепла выделяет и поэтому ярче горит лампа с большим сопротивлением ) 3.2 лампы, соединённые параллельно, подключены к источнику тока. Сопротивление первой лампы меньше, чем у второй. Какая лампа будет гореть ярче при замыкании цепи? (первая лампа, т.к. при параллельном соединении Q = U 2 t/R ( т.е. Q

1/ R), напряжение на лампах одинаковы. Больше тепла выделяет и поэтому ярче горит лампа с меньшим сопротивлением)

20 Применение теплового действия тока

21 Применение теплового действия тока Посмотрите видеоролик и составьте по нему 2 вопроса другим командам (желательно 1 «тонкий» и 1 «толстый») type=news&doc_id=322232

23 ЛАМПА НАКАЛИВАНИЯ 1 колба; 2 полость колбы (вакуумированная или наполненная газом); 3 тело накала; 4, 5 электроды (токовые вводы); 6 крючки-держатели тела накала; 7 ножка лампы; 8 внешнее звено токоввода, предохранитель; 9 корпус цоколя; 10 изолятор цоколя (стекло); 11 контакт донышка цоколя.

24 Двойная спираль (биспираль) лампы В современных лампах применяются спирали из вольфрама спирали Рабочая температура спирали градусов. Колбы ламп наполняют инертным газом (азотом, аргоном), что резко уменьшает скорость испарения вольфрама, благодаря чему увеличивается срок службы лампы и возрастает её КПД (КПД всего 5%)азотомаргоном Т. к. металлы имеют малое удельное сопротивление, для достижения необходимого сопротивления нужен длинный и тонкий проводметаллыудельное сопротивление Для уменьшения размеров тела накала ему обычно придаётся форма спирали При включении лампы протекает очень большой ток (в десять четырнадцать раз больше рабочего тока). Поэтому лампы чаще перегорают во время включения. По мере нагревания нити её сопротивление увеличивается и ток уменьшается

25 Энергосберегающие лампы Принцип действия : преобразовании электрической энергии, проходящей через нить, в световую. Строение: колба, наполненной парами ртути и аргоном пускорегулирующее устройство (стартер ) На внутреннюю поверхность колбы нанесено специальное вещество, называемое люминофор. Как это работает? Под действием высокого напряжения в лампе происходит движение электронов. Столкновение электронов с атомами ртути образует невидимое ультрафиолетовое излучение, которое, проходя через люминофор, преобразуется в видимый свет.

Читайте так же:
Выключатель для теплого пола сенсорный

27 Энергосбережение в быту Бытовая техникаПричина повышенного потребления электроэнергии Способ решения проблемы Электрический чайник Включенный на 10 минут и полностью наполненный водой электрический чайник мощностью 1,5 кВт/ч увеличивает энергопотребление на 0,25 кВт/ч. Каждое утро 3 миллиона чайников, включаемые как по команде, потребляют 0,75 млн кВт/ч, а в месяц — 22,5 млн кВт/ч (для сравнения, месячная выработка электроэнергии одной из крупнейших электростанций столичного региона — ГРЭС-24 — составляет 195,3 млн кВт/ч). Наливайте утром нужное для чашки чая количество воды — например, четверть чайника. В результате многократного нагревания и кипячения воды на внутренних стенках электрочайника образуется накипь, которая обладает малой теплопроводностью. Поэтому вода в таком чайнике нагревается медленно Своевременно удаляйте из электрочайника накипь

28 Электрическая плита При выборе посуды, которая не соответствуют размерам электроплиты, теряется 5-10% энергии. Посуда с искривлённым дном может привести к перерасходу электроэнергии до % Для экономии электроэнергии на электроплитах надо применять посуду без дефектов и с дном, которое равно или чуть превосходит диаметр конфорки Быстрое испарение воды удлиняет время готовки на 20-30% При приготовлении пищи желательно закрывать кастрюлю крышкой. После закипания пищи лучше перейти на низкотемпературный режим готовки Стиральная машина При неполной загрузке стиральной машины происходит перерасход электроэнергии примерно на 10-15%. При неправильной программе стирки — до 30%. Не следует пренебрегать инструкцией к стиральной машине, где изложены особенности каждого из режимов ее работы и нормативы загрузки белья

29 Осветительны е приборы При неправильном подборе осветительных приборов и использовании устаревшей электробытовой техники перерасход электроэнергии составляет до 50% Замена ламп накаливания компактными люминесцентными лампами обеспечит, по крайней мере, 4-хкратную экономию электроэнергии. Современная энергосберегающая лампа служит 10 тысяч часов, в то время как лампа накаливания — в среднем 1,5 тысячи часов, то есть в 6-7 раз меньше. Но при этом ее стоимость — примерно вдвое больше. Компактная люминесцентная лампа напряжением 11 Вт заменяет лампу накаливания напряжением в 60 Вт. Затраты окупаются менее чем за год, а служит она 3-4 года. Кроме того, не надо пренебрегать естественным освещением. Светлые шторы, светлые обои и потолок, чистые окна, умеренное количество цветов на подоконниках увеличат освещенность квартиры и офиса и сократят использование светильников

30 Холодильник Если вы поставите холодильник в комнате, где температура достигает 30 0 С, то потребление энергии удвоится Холодильник надо ставить в самое прохладное место кухни, желательно возле наружной стены, но ни в коем случае не рядом с плитой Утюг Чтобы отгладить пересушенное белье, нужен более горячий утюг, а значит, энергопотребление больше Чтобы немного сэкономить при глажке, оставляйте белье чуть-чуть недосушенным Пылесос При использовании пылесоса на треть заполненный мешок для сбора пыли ухудшает всасывание на 40%, соответственно, на эту же величину возрастает расход потребления электроэнергии Чаще опорожняйте пылесборник вашего пылесоса

31 Ответьте на вопросы 1.Из какого материала необходимо изготовлять спирали для лампочек накаливания? 2.Объясните, почему провода, подводящие ток к электрической лампочке, практически не нагреваются, в то время как нить лампочки раскаляется добела? 3.Если на волоске электролампы образуется изъян(утоньшение), то место изъяна накаляется сильнее остальной части волоска. Почему? 4.Какими свойствами должен обладать металл, из которого изготовляют спирали нагревательных элементов?

32 Верите ли вы? 2 ученых, работающих в разных странах и не знакомые друг с другом, почти одновременно сделали одно и то же открытие? Физический закон носит имена владельца пивоваренного завода и ректора Санкт-Петербургского университета? В конце 19 века Россию называли родиной света? Электрическая лампа чаще перегорает в момент замыкания тока и очень редко в момент размыкания? Наибольший расход электроэнергии в наших квартирах приходится на освещение? И это действительно так!

Читайте так же:
Выключатель теплого пола energy

33 Создайте свой Синквейн 1. название темы одним словом, 2. два прилагательных, характеризующих тему 3. три глагола, описывающие самое важное в теме 4. словосочетание из 4х слов, показывающее отношение к теме 5. резюме (краткий вывод) Ток Необходимый, опасный Движет, нагревает, убивает Мы все его заложники Ток есть — есть контакт!

34 Д.З. §53,54, упр. 27, задание 8 – по желанию. Спасибо за сотрудничество!

Открытие теплового действия тока

Среди тепловых эффектов, производимых током батареи, самым наглядным, без сомнения, была дуга между двумя угольными проводниками. Уже в 1802 г. Кюрте заметил, что в момент замыкания цепи батареи с помощью железного проводника, соприкасающегося с куском древесного угля, появлялись искры настолько яркие, что они освещали окружающие предметы. Несколько лет спустя Джон Чилдрен <1778—1852) обнаружил, что некоторые кусочки угля, помещенные в цепь, «распространяли такой яркий свет, что даже сияние солнечного диска казалось слабым по сравнению с ним».

Но поистине эффектное явление продемонстрировал в 1810 г. Дэви с помощью большой батареи, состоявшей из 2000 элементов и построенной им на средства Королевского института. Помимо различных опытов по быстрому накаливанию и расплавлению металлов, которыми он поражал публику на своей первой лекции, проведенной после сооружения этой колоссальной батареи, Дэви также провел опыт с кусками угля длиной с дюйм и толщиной в шестую часть дюйма, включенными в цепь батареи. После того как цепь была замкнута, проскочила ярчайшая искра и куски угля накалились добела более чем на половину своей длины, «. когда же оба куска угля стали удалять друг от друга, образовался непрерывный разряд через раскаленный воздух на расстоянии по крайней мере в четыре дюйма в виде необыкновенно яркой широкой световой дуги конической формы, обращенной выпуклостью вверх».

Дэви сразу же проверил, насколько высока температура этой дуги, которая плавила платину, «как будто то был воск в пламени свечи». Длину дуги можно было увеличивать, помещая ее под колпак пневматической машины и разрежая воздух, и если разреженность была достаточно сильной, удавалось получать дугу очень эффектного пурпурного цвета длиной в шесть или семь дюймов.

Ясно, что опыт Дэви, для которого требовалась мощная батарея, повторить было нелегко. Поэтому, когда десять лет спустя, в июле 1820 г., Де ла Риву удалось повторить этот опыт перед Женевским Научным Обществом, это показалось вещью настолько новой, что вплоть до сегодняшнего дня некоторые историки приписывают это открытие женевскому физику.

Если опыт с дугой поражал своей эффектностью, то другие тепловые явления казались весьма запутанными. Так, проведя по совету Волластона опыт с двумя платиновыми проволоками, Чилдрен (1815 г.) обнаружил, что из двух платиновых проволок одинаковой длины, но разного диаметра, подключенных в цепь последовательно, раскалялась только более тонкая, тогда как при параллельном включении раскалялась только более толстая. Дэви (1821 г.), нагревая лампой часть цепи, добивался уменьшения температуры другой ее части, а охлаждая ее льдом, получал увеличение температуры другой части.

Вплоть до 1841 г. все попытки объяснить эти и многие другие странные явления оказывались несостоятельными, но все более укреплялось мнение, что нагревание проводников связано с сопротивлением, которое они оказывают проходящему через них току, так что большему сопротивлению соответствует большее выделение тепла. Это мнение было высказано еще Киннерсли по поводу тепла, выделяемого разрядом лейденской банки. Основываясь на упомянутых выше опытах, Дэви пошел дальше, утверждая, что «. проводящая способность металлов меняется с изменением температуры и уменьшается в том же отношении, в каком растет температура».

Этот закон сейчас хорошо известен, гораздо менее известно, кто открыл его.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector